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Big picture

* We want to modify the world to do what
we want:

* More biodiversity or more crop productivity

* New management
* Mitigate problems
* Conservation
* Production
* Invasions / Diseases



This talk...

* What | want to do is tell a story
* | won't detail learning approaches

* What | will try and do is identify interesting

points and questions, and try to illustrate the

importance of our work

*|'ll also try to identify some key gaps



Question

*Why can’t we detect, measure,
understand and predict
ecosystem change?



The FSE data

* Split-field
design




Sampling




/ Sampling

® 1.5 million weed plants counted

® 1 ton (dried) plant biomass sorted

® > 25 million Iinvertebrates
trapped
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W @ > 1400 km of pollinator transects
walked



Size of the FSE
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Results
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Impact of FSE
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Interpretation

Table 2. Half-field whole-season mean counts of bees in conventional (C) and GMHT beet, maize and spring oilseed rape, and
their respective treatment effects.

(Multiplicative treatment ratio, R = 109, where d is the mean of the differences between GMHT and C treatments on the logarith-
mic scale; confidence limits for R are back-transformed from those for 4. CI, confidence interval.)

geometric mean

crop and taxa period n C GMHT R (95% CI) p-value
beet
total bees year 20 3.62 1.55 0.55 (0.31-0.99) 0.05*
Apis mellifera year i 4.73 0.55 0.27 (0.20-0.36) 0.03*
bumble-bees year 18 2.58 1.07 0.58 (0.31-1.07) 0.09
long-tongued bees year 5 1:¢1 0.00 0.37 (0.31-0.44) 0.10
maize
total bees year 15 1.14 2.09 1.44 (0.58-3.57) 0.41
A. mellifera year 5 0.71 4.24 3.07 (0.01-1136.41) 0.49
bumble-bees year 14 1.02 2:12 1.55 (0.65-3.65) 032
spring oilseed rape
total bees year 62 44.28 36.52 0.83 (0.66-1.05) 0.13
A. mellifera year ol 10.95 9.16 0.85 (0.57-1.28) 0.44
bumble-bees year 62 27.38 21.58 0.80 (0.63-1.00) 0.06
long-tongued bees year 38 2.68 2.02 0.82 (0.61-1.10) 0.16

b =005



Interpretation

* Changes like this seen in all
systems with any new
Mmanagement

* Will all be interpreted as
‘bad’

* | would argue that we hadn't
really answered the question
of whether the ecosystem
had changed



Benefits of networks

* The world is complex and is not
well reflected by simple
approach of the FSE

* Networks are one way of
representing, analysing and
understanding this complexity

* Problem is that they are
‘expensive’ to produce

* This is where ‘learning’ from
data reallv comes into olav



*Herbicide removes food and
shelter - something to eat and
somewhere to sit

*Species Y will move to new habitat

- §pslifes INEeFFHIEH ReBs, dnere Rl
chiege Vet Y as R,

- Expectation that: Ry is correlated
with R




/ Background information

* Appropriate
mouthparts for feeding

* |In any sample Y and X
should co-occur

 Big things eat small
things

« With this set of ‘rules’
we ‘learn’ food webs



*Carabid

uuuuuuuuuuuuuuuuuuuuuu

* 45 invertebrate species or taxa (~25%),
but about 74% of the individuals were
linked

* Collembola important prey. Carabid
beetles were the dominant predators.
Carabid larvae predators of a wide
variety of prey.

* Lots of intraguild predation

han et ; Tamaddoni-Nezhad et al. (2012) Machine Learning
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Automatic literature verification

Hypothesis Frequency (HFE)
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Problems
- Pterostichus melanarius Z “\\-H s
2 f,,i!--'"
- 7\

\ June 20 | \
' %arentlﬁbrlloglcal links..

* |In the network |t |s that spiders act as prey

Davey et al. (2013). Journal of Applied Ecology. doi: 10.1111/1365-2664.12008



Key point

The learning is not just doing
the expected reconstruction -
text mining the data

It Is suggesting a reduced set
of hypotheses for testing

Moreover it is suggesting
“Novel” hypotheses that
were validated

It Is doing genuine science
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Network statistics
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Key point

* Learning from existing data
can produce management-
iImportant networks

* We can test for ecosystem
change due to management



Next Generation

Biomonitoring

* Current biomonitoring approaches
use indicators (chemical species,
biological species, behaviour) as
proxies of effect

e But:

* Limited accuracy (don’t capture
complexity)

* Costs (limited scale and slow)
* Generality (system specific and

yV W _ N N APRN. APRE B Ry g



Next Generation

Biomonitoring
The approaches reflect methods
and techniques that date to the

1950s

We believe that a new
biomonitoring approach is long

overdue t

e solvet

nat can

nese problems

* produce indicator values (fits In
current biomonitoring
framework)



Next Generation

Biomonitoring
* The idea is really simple

* Nucleic acids (DNA/RNA) are
ubiquitous, and nucleic acid
sample data contains information

we can learn on:
* species (OTUs)
* ecological functions

* Next generation sequencing



Case study - oak tree

pathogens
Corinne Vacher was to be
discussing this

 Aim to build microbial interaction
networks, on oak tree leaves,
subject to invasion by a pathogen -
Erysiphe alphitoides

* DNA sampled from leaves across a
number of trees

* NGS performed

h n
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NGS

ing

Reconstruct
networks

Jakuschkin, Fievet, Robin and Vacher (2016) Microbial Ecology.



Reconstructing NGS

networks
 But, this is not

function
* Bayesian learning @ @. f’
and

environmental ////@

preference @ //

* What happens in
invasion; do someg”_——
OTUs facilitat@=——=

Invasion: and are

Jakuschkin, Fievet, Robin and Vacher (2016) Microbial Ecology.



Key point

Learning from NGS data can
reconstruct networks of OTUs

Moreover, it can also start to
recover the mechanistic
processes (the functions)
structuring the community

It does ecology



G/obal next-generation

biomonitoring

A) Automated Sampler and

Sequencing
What we
.. Schematic of the key elements of an
e n VI S | O n a re automated sampler and sequencer to
. be distributed across a global array
a U tO m a t | C of sample points
samplers -
Sample mechanism
Based on -
I I DNA Extractor and R\ Z e
eX | Stl n g reagents pack \ﬁ ’ P
technology b
Sequencer and 4G a4
communication
pack

Battery pack and
processor




Global next-generation
biomonitoring

* EXxisting
technolog
y - MinlON

+ Sampler /

possibly
the
biggest
hurdle



G/obal next-generation

biomonitoring

What we
envision are
automatic
samplers

Based on
existing
technology

Sampling

hourly, daily,

weekly...

replicate
camhlec

A) Automated Sampler and
Sequencing

Schematic of the key elements of an
automated sampler and sequencer to
be distributed across a global array
of sample points

Sample mechanism
DNA Extractor and r%\ % ’. "
reagents pack AN _

Sequencer and 4G
communication
pack

Battery pack and
processor




G/obal next-generation
biomonitoring |

B) Global array of samplers and
in-cloud network reconstruction

* Thousands in

Sequences, in all uploaded samples are identified and

eco Sy Ste ms the implicit interactions reconstructed into networks
using machine learning in the cloud

around the
globe

* NGS data
uploaded to
the cloud

* Validity
checked

* Parsed again
existing, onli




G/obal next-generation
biomonitoring

 Learning in the

C) Analysis across highly-
replicated networks

Detection of change in network

C | ou d |n frea I- structure, from analysis of variation
\ between networks, across the
t| M e " sample array

* This already
exists in the
form of Google
Translate, Now
and Apple’s Siri

* Replicated

networks and
automatic /

analvsis



G/obal next-generation
biomonitoring

 Comparison between between
networks should lead to
understanding

* Variation over all sets of replicate
networks — natural network variation

* Change greater than this variation
Indicates something has happened
(automatically)

* Humans then interpret this using
ecoloaical theorv



G/obal next-generation
biomonitoring

* Qur belief is that this
biomonitoring would be:

* Universal
* General
* Rapid and sensitive

* Lead to a revolution in our
understanding of ecosystem
change and management



Problems with NGB

* (Cost
* economies of scale for the
equipment
* reuse existing infrastructure
* human intervention
 Satellite-based remote

sensing
* Policy - no network based
policy

* Technical - NGS seqguence

AaFAalh~acAce ArA ~1ireantFlhyv, AAA -



Things to do....

Can we |learn eco-network structure

and function from NGS data

Which learning methods work best

for this framework

Can we learn and analyse networks

In real-time

We need to develop the statistics

of this

 Detect change across replicate
networks

* Power - how many samplers for
measuring a given effect size



Conclusions

Learning methods are great!
They do real science and real
ecology

We learn community
structure, change and
function

Moreover, we can do this
from generic nucleic acid-
based data

We could therefore build a



	Slide 1
	Big picture
	This talk…
	Question
	The FSE data
	Sampling
	Sampling
	Size of the FSE
	Results
	Impact of FSE
	Interpretation
	Interpretation
	Benefits of networks
	Trophic model - data
	Background information
	Slide 16
	Slide 17
	Automatic literature verification
	Problems
	Key point
	Slide 21
	Slide 22
	Network statistics
	Key point
	Next Generation Biomonitoring
	Next Generation Biomonitoring
	Next Generation Biomonitoring
	Case study – oak tree pathogens
	Reconstructing NGS networks
	Reconstructing NGS networks
	Key point
	Global next-generation biomonitoring
	Global next-generation biomonitoring
	Global next-generation biomonitoring
	Global next-generation biomonitoring
	Global next-generation biomonitoring
	Global next-generation biomonitoring
	Global next-generation biomonitoring
	Problems with NGB
	Things to do….
	Conclusions

