Context and objective	Ecological network model	Experimental results	Kelp forest species data

Learning ecological network structure using parametrized Dynamic Bayesian Network

Étienne Auclair

INRA - Unité MIAT

October 12, 2016

Context and objective $\bullet \circ \circ$

Ecological network model 0000 Experimental results 000000

Kelp forest species data 000

Ecological context and objective

Context

- Management of biodiversity within an ecological network
- Interactions are poorly known

• Protection of certain areas

Objective

Developing a method for learning the structure of an ecological network using presence/absence temporal data

Context and objective $\circ \bullet \circ$

Ecological network model 0000 Experimental results 000000

Kelp forest species data 000

Probabilistic network learning

Bayesian network

- Bayesian network
 - Directed acyclic graph
 - Conditional probability tables
- Dynamic Bayesian network (DBN)
 - Recurrent phenomenon (temporal...)
 - Stationary Markov process

Context and objective $\circ \circ \bullet$

Ecological network model

Experimental results 000000

Kelp forest species data 000

Learning the structure of BN

Score learning methods

- Score calculated using the parameters of the model (BIC, BDe)
- Greedy algorithm
 - Step 1 : Estimating the parameters with a known graph G
 - Step 2 : Search of a new graph improving score
 - Back to step 1 until convergence

Experimental results 000000

Kelp forest species data 000

DBN model of an ecological network

Ecological network

- Directed graph
- Edges labelled according to the type of interaction :
 - + : Positive influence
 - - : Negative influence

Modelling the dynamic of the species

 Dynamic Bayesian Network model

Context and objective	Ecological network model ●○○○	Experimental results 000000	Kelp forest species data
Notations			

Data

- $X_t^i \in \{1, 0\}$ presence or absence of the species *i*
 - $(i \in \{1, ..., n\})$ at time step $t \ (t \in \{1, ..., T\})$.
- $A^t \in \{1,0\}$ protection or absence of protection at time step t.
- $N_{i,l}^t$ number of "*l*" labelled parents of the species *i* present at time step *t*.

Parameters

- Recolonization probability ε .
- Probability of success of each influence ρ^+ , ρ^- .
- Penalization for unprotected moments : μ .

Context and objective	Ecological network model ○●○○	Experimental results 000000	Kelp forest species data
Probabilities			

Recolonization

Species absent at moment t - 1: probability of recolonization at time step t

•
$$P(X_i^t = 1 | X_i^{t-1} = 0, A^{t-1} = 1) = \varepsilon$$

•
$$P(X_i^t = 1 | X_i^{t-1} = 0, A^{t-1} = 0) = \mu \varepsilon$$

Survival

Species present at moment t - 1: probability of survival at time step t

•
$$P(X_i^t = 1 | X_i^{t-1} = 1, A^{t-1} = 1) = (1 - (1 - \rho^+)^{N_{i,+}^t}) (1 - \rho^-)^{N_{i,-}^t}$$

•
$$P(X_i^t = 1 | X_i^{t-1} = 1, A^{t-1} = 0) = \mu \left(1 - (1 - \rho^+)^{N_{i,+}^t} \right) \left(1 - \rho^- \right)^{N_{i,-}^t}$$

Expression of the likelihood

$$\log P_{\mathcal{LG}_{\rightarrow},\theta}(x^2,\ldots,x^T \mid x^1,a) = \sum_{i=1}^n score(i)$$

Kelp forest species data

Learning a Parametrized labelled DBN

Parametrized labelled DBN

- No conditional probability tables
 - Independent recolonization probabilities
 - A parameter per interaction type
 - Decreased probability when there is no protection
- No explicit expression of the maximum likelihood
- How to learn labelled edges ?

Learning P-DBN by score-based method

- Fixed number of parameters : likelihood as score
- Greedy algorithm
 - Step 1 : Parameters estimation by likelihood maximization
 - Step 2 : Graph structure learning by 0-1 integer linear programming
 - Back to step 1 until convergence

Experimental results 000000

Kelp forest species data 000

Optimal graph structure

Integer linear programming (ILP) 0-1

- Linearisation of the problem : addition of binary variables defined by linear constraints
- Optimization of the score using ILP
- One independent ILP per species

Characteristics of the ILP

For n species, T time steps and k parents at most :

- Number of variables : $\left(3 \cdot n + 1 + T \cdot \left(\frac{k^2}{2} + \frac{3 \cdot k}{2} + 8\right)\right)$ for each species.
- Number of constraints : $(n + 1 + T \cdot (2 \cdot k^2 + 6 \cdot k + 21))$ for each species.

Context and objective	Ecological network model	Experimental results ●00000	Kelp forest species data
Simulated data			

Network and covariates

- Extract from real network : subgraph where no species have more than k parents
- Observed on T = 30 years
- The last 18 years are protected

Parameters

Every set of parameters configuration for the values $\{0.2, 0.8\}$ 1 : $(a = 0.2, a^+ = 0.2, a^- = 0.2, \mu = 0.2)$

1:
$$\{\varepsilon = 0.2, \rho^+ = 0.2, \rho^- = 0.2, \mu = 0.2\}$$

16 : {
$$\varepsilon = 0.8, \rho^+ = 0.8, \rho^- = 0.8, \mu = 0.8$$
}

Context and objective	Ecological network model	Experimental results ○●○○○○	Kelp forest species data
Estimation of	the narameters		

Network : k = 2, n = 18. 150 simulations.

- Estimated parameters close to real parameters
- Better estimation for higher parameter value

Ecological network model

Experimental results 00000

Kelp forest species data 000

Learning the structure

Network : k = 2, n = 4. 150 simulations.

Figure : Quality of the structure learning step

Ecological network model 0000 Experimental results

Kelp forest species data 000

P-DBN learning algorithm

Network : k = 4, n = 45. 40 simulations.

Global results

- Average precision : 14.07%(+); 17.96%(-).
- Average recall : 29.53%(+); 19.09%(-).
- Learning on one presence/absence data is not efficient
- Does our method fail to learn the interactions ?

Context	and	objective

Ecological network model 0000 Experimental results 000000

Kelp forest species data 000

Modal graph

Modal graph re	sults		
Context and objective	Ecological network model	Experimental results	Kelp forest species data

Modal graph of the x most often learnt edges amongst 40 simulations

Figure : Performances of the modal graph given x

How to apply this method on real data ?

 $\begin{array}{c} \text{Context and objective} \\ \text{000} \end{array}$

Ecological network model

Experimental results 000000

Kelp forest species data $\circ \circ \circ$

Kelp forest dataset

PISCO survey

- Abundance of fishes, macroalgae and invertebrates
- 4 sites of observation with different status of protection
- 15 years of monitoring (2000-2014)
- 250 species monitored
- Some interactions are known

Abundance to presence/absence

- Building several presence/absence dataset ?
- Thresholds on scaled abundance data

Experimental results 000000

Kelp forest species data $\circ \bullet \circ$

Structure learning results on real data

Data used

- Selection of n = 38 species with known interactions
- Area protected since 2003 (15 years of observation 3 unprotected 12 protected)

Figure : Performance on the modal graph for real data

Context	and	objective

Ecological network model

Experimental results

Kelp forest species data $\circ \circ \bullet$

Analysis on the results

Why those results ?

- Did we miss some key interacting species ?
- Is the dynamic of the species influenced by the interactions ?

Figure : Heatmap of the coefficient of correlation between the time series of the species. o : Positive influence - x : Negative influence

Conclusion			
Context and objective	Ecological network model	Experimental results 000000	Kelp forest species da 000

Parameterized Dynamic bayesian network

- DBN with a given set of parameters
- Structure learning using ILP

Results

- Learning one one dataset is hard
- Difficulties to learn the structure on real data

Perspectives

- Management of the biodiversity within an unknown ecological network
- Managing while learning