Sobol sensitivity analysis Recent statistical result overview
 Kick and follow for network construction

Fabrice Gamboa
CARTABLE
12th of October 2016

Special thanks

- My collaborators in sensitivity analysis: G. Chastaing, S. Da Veiga, B. looss, A. Janon, T. Klein, A. Lagnoux, P. Lemaitre, M. Nodet, A.L. Popelin, C. Prieur
INRA and Organizers of CARTABLE Conference for the invitation

Special thanks

- My collaborators in sensitivity analysis: G. Chastaing, S. Da Veiga, B. looss, A. Janon, T. Klein, A. Lagnoux, P. Lemaitre, M. Nodet, A.L. Popelin, C. Prieur
- INRA and Organizers of CARTABLE Conference for the invitation

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

6 End

7 Bibliography

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

Sensitivity analysis: the Costa Brava consortium

- Mathematical Statistics with Industrial Partners-Project ended 2013
\rightarrow Industrial partners: CEA, IFP
\rightarrow Academic partners: LJK, IMT
- Object of study and problematics
\rightarrow High dimensional complicated regression models modeling a computer code $F(X)$ (X is a d-dimensional vector)
\rightarrow Tell things on F by only using a small sample $\left(X_{i}, F\left(X_{i}\right)\right)$

Sensitivity analysis: the Costa Brava consortium

- Mathematical Statistics with Industrial Partners-Project ended 2013
\rightarrow Industrial partners: CEA, IFP
\rightarrow Academic partners: LJK, IMT
- Object of study and problematics
\rightarrow High dimensional complicated regression models modeling a computer code $F(X)$ (X is a d-dimensional vector)

Sensitivity analysis: the Costa Brava consortium

- Mathematical Statistics with Industrial Partners-Project ended 2013
\rightarrow Industrial partners: CEA, IFP
\rightarrow Academic partners: LJK, IMT
- Object of study and problematics
\rightarrow High dimensional complicated regression models modeling a computer code $F(X)$ (X is a d-dimensional vector)
\rightarrow Tell things on F by only using a small sample $\left(X_{i}, F\left(X_{i}\right)\right)$

What are we dealing with?

Big computer codes= F black box

$$
Y=F(X)
$$

- Code inputs: X high dimension object (vectors or curves).
- Code outputs Y (scalar, vectorial, functional, ...).

X complex structure and/or uncertain
\Rightarrow seen as random

STOCHASTIC APPROACH

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?
\rightarrow Model Reduction
\rightarrow Comprehensive analysis of the model

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?
\rightarrow Model Reduction
\rightarrow Comprehensive analysis of the model

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?
\rightarrow Model Reduction
\rightarrow Comprehensive analysis of the model

Questions mainly addressed on the general model

- Sensitivity analysis= what coordinates of X have most effects on F ?
\rightarrow Model Reduction
\rightarrow Comprehensive analysis of the model

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

Preamble

Hoeffding-Antoniadis-Efron \& Morris- Sobol decomposition-FANOVA

From Barry Simon: CMV matrices: Five years after (2007)

- The Arnold Principle: If a notion bears a personal name, then this name is not the name of the inventor. The Berry Principle: The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 (Arnold says that Berry formulated these principles.)

Preamble

Hoeffding-Antoniadis-Efron \& Morris- Sobol decomposition-FANOVA

From Barry Simon: CMV matrices: Five years after (2007)

- The Arnold Principle: If a notion bears a personal name, then this name is not the name of the inventor.
- The Berry Principle: The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 (Arnold says that Berry formulated these principles.)

Preamble

Hoeffding-Antoniadis-Efron \& Morris- Sobol decomposition-FANOVA

From Barry Simon: CMV matrices: Five years after (2007)

- The Arnold Principle: If a notion bears a personal name, then this name is not the name of the inventor.
- The Berry Principle: The Arnold Principle is applicable to itself. V.I. Arnold, On Teaching Mathematics, 1997 (Arnold says that Berry formulated these principles.)

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA Ideal ANOVA $d=2$

- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA Ideal ANOVA $d=2$

- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA

 Ideal ANOVA d=2- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA

 Ideal ANOVA $d=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right)
$$

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA

 Ideal ANOVA $d=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right)
$$

$$
F_{\emptyset}=\frac{1}{l_{1} l_{2}} \sum_{i_{1}, i_{2}} F\left(i_{1}, i_{2}\right)
$$

$$
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
$$

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA

 Ideal ANOVA $d=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(\mathfrak{i}_{1}, \mathfrak{i}_{2}\right) \forall\left(\mathfrak{i}_{1}, \mathfrak{i}_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right)
$$

$$
F_{\emptyset}=\frac{1}{l_{1} l_{2}} \sum_{i_{1}, i_{2}} F\left(i_{1}, i_{2}\right)
$$

$$
F_{1}\left(X^{1}\right)=\frac{1}{l_{2}} \sum_{i_{2}} F\left(X^{1}, i_{2}\right)-F_{\emptyset}
$$

Hoeffding decomposition in a nutshell: ideal 2d-ANOVA

 Ideal ANOVA d $=2$- $F\left(X^{1}, X^{2}\right)$ scalar response depending on discrete factors X^{1}, X^{2},
- $X^{1} \in\left\{1, \cdots, l_{1}\right\} X^{2} \in\left\{1, \cdots, l_{2}\right\}$

If one have at hand all $F\left(i_{1}, i_{2}\right) \forall\left(i_{1}, i_{2}\right) \in\left\{1, \cdots, l_{1}\right\} \times\left\{1, \cdots, l_{2}\right\}$ Then unique orthogonal decomposition

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\frac{1}{l_{1} l_{2}} \sum_{i_{1}, i_{2}} F\left(i_{1}, i_{2}\right) \\
F_{1}\left(X^{1}\right)=\frac{1}{l_{2}} \sum_{i_{2}} F\left(X^{1}, i_{2}\right)-F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Hoeffding decomposition: easy example ideal 2d-ANOVA

Ideal ANOVA d $=2$

- $F\left(X^{1}, X^{2}\right)$ depending on independent random factors X^{1}, X^{2},
- X^{1} uniform on $\left\{1, \cdots, l_{1}\right\}, X^{2}$ uniform on $\in\left\{1, \cdots, l_{2}\right\}$

Stochastic decomposition
Then unique L^{2} orthogonal decomposition

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\mathbb{E}(F(X) \\
F_{1}\left(X^{1}\right)=\mathbb{E}\left(F(X) \mid X^{1}\right)-F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Classical Hoeffding decomposition

Functional ANOVA: pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)

X =independent components
(component may be anything: scalar, vector, curve...)

F may be written in an unique way as a sum of uncorrelated terms:

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

Classical Hoeffding decomposition

Functional ANOVA: pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable) $X=$ independent components \qquad
\square
F may be written in an unique way as a sum of uncorrelated terms:

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

Classical Hoeffding decomposition

Functional ANOVA: pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable) $X=$ independent components (component may be anything: scalar, vector, curve...) $X \sim \bigotimes_{i=1}^{d} \mathbb{P}_{X_{i}}$

F may be written in an unique way as a sum of uncorrelated terms:

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

Classical Hoeffding decomposition

Functional ANOVA: pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)
$X=$ independent components (component may be anything: scalar, vector, curve...) $X \sim \bigotimes_{i=1}^{d} \mathbb{P}_{X_{i}}$

Theorem (decomposition in $\mathrm{L}^{2}\left(\otimes_{i=1}^{\mathrm{d}} \mathbb{P}_{\mathrm{X}_{\mathrm{i}}}\right)$)

F may be written in an unique way as a sum of uncorrelated terms:

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right)
$$

Here, $X^{A}:=\left(X^{i}, i \in A\right)$. Hence,

$$
\operatorname{Var} \mathrm{F}(\mathrm{X})=\sum_{\mathrm{A} \subset\{1, \ldots, \mathrm{~d}\}} \operatorname{Var} \mathrm{F}_{\mathrm{A}}\left(\mathrm{X}^{\mathrm{A}}\right) .
$$

Classical Hoeffding decomposition

Functional ANOVA: pioneering works of Antoniadis (1984) and Sobol (1990) (F square integrable)
$\rightarrow X$ has independent components (component may be anything: scalar, vector, curve..)

Theorem

F may be written in an unique way as a sum of uncorrelated terms:

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right) .
$$

Here, $X^{\mathcal{A}}:=\left(X^{i}, i \in \mathcal{A}\right)$. Hence,

$$
1=\frac{\sum_{A \subset\{1, \ldots, d\}} \operatorname{Var} F_{A}\left(X^{A}\right)}{\operatorname{Var} F(X)}
$$

example: $d=2$

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset}=\mathbb{E}(F(X)), \quad F_{i}\left(X^{i}\right)=\mathbb{E}\left(F(X) \mid X^{i}\right)-F_{\emptyset}
\end{gathered}
$$

$$
\begin{aligned}
F_{1,2}\left(X^{1}, X^{2}\right) & =F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right] \\
& =F\left(X^{1}, X^{2}\right)-\mathbb{E}\left(F(X) \mid X^{1}\right)-\mathbb{E}\left(F(X) \mid X^{2}\right)+\mathbb{E}(F(X))
\end{aligned}
$$

Othogonality

$$
\begin{aligned}
\mathbb{E}\left[F_{1,2}\left(X^{1}, X^{2}\right) F_{1}\left(X^{1}\right)\right] & =\mathbb{E}\left[F_{1,2}\left(X^{1}, X^{2}\right) F_{2}\left(X^{2}\right)\right]=\mathbb{E}\left[F_{1,2}\left(X^{1}, X^{2}\right)\right]=0 \\
\mathbb{E}\left[F_{1}\left(X^{1}\right) F_{2}\left(X^{2}\right)\right] & =\mathbb{E}\left[F_{1}\left(X^{1}\right)\right]=\mathbb{E}\left[F_{2}\left(X^{2}\right)\right]=0
\end{aligned}
$$

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

Definition and intuition beyond

 Important assumption X has independent components (component may be a aydting)\rightarrow Want to know the most influent components (having most effects on F)

Sobol total indices

Definition and intuition beyond

 Important assumption X has independent components (component may be a anything)\rightarrow Want to know the most influent components (having most effects on F)

Sobol total indices

Definition and intuition beyond

 Important assumption X has independent components (component may be anything)\rightarrow Want to know the most influent components (having most effects on F)

Sobol indices of first order

$$
S_{i}:=\frac{\operatorname{Var}\left(\mathbb{E}\left[F(X) \mid X_{i}\right]\right)}{\operatorname{VarF}(X)}=\frac{\operatorname{VarF}_{i}\left(X^{i}\right)}{\operatorname{VarF}(X)}
$$

Sobol total indices

Definition and intuition beyond

 Important assumption X has independent components (component may be anything)\rightarrow Want to know the most influent components (having most effects on F)

Sobol indices of first order

$$
S_{i}:=\frac{\operatorname{Var}\left(\mathbb{E}\left[F(X) \mid X_{i}\right]\right)}{\operatorname{VarF}(X)}=\frac{\operatorname{VarF}_{i}\left(X^{i}\right)}{\operatorname{VarF}(X)}
$$

Sobol total indices

$$
S_{i}^{\text {tot }}:=1-\frac{\operatorname{Var}\left(\mathbb{E}\left[F(X) \mid X^{\sim} \mathfrak{i}\right]\right)}{\operatorname{VarF}(X)}=\sum_{A \subset\{1, \cdots, d\}: i \in A} \frac{\operatorname{VarF}_{A}\left(X^{A}\right)}{\operatorname{VarF}(X)}
$$

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

Statistical problems

$Y=F(X), X_{1}, \cdots X_{N}$ some sample of X and $Y_{1}, \cdots X_{N}$ at hand

- Give estimators of S_{i} and $S_{i}^{\text {tot }}$,
- Develop mathematical tools to quantify accuracy of estimators (limit Theorem, confidence regions...)
- Build optimal estimation procedures.

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
\checkmark Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method $\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$, $\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime}, i^{i}\right) \cdot X^{\prime,-i}$ independent copy of X^{i}.
- Ergodic: FAST. Use of Weyl Theorem

$$
\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \ldots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)
$$

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method
$\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots F\left(X_{N}\right)$,
$\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime}, i\right), X^{\prime, i}$ independent copy of X^{-i}.
- Ergodic: FASTI Use of Weyl Theorem

$$
\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \ldots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)
$$

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method

- Ergodic: FAST. Use of Weyl Theorem

$$
\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \ldots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)
$$

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method

- Ergodic: FAST. Use of Weyl Theorem
$\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
\checkmark Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method

- Ergodic: FAST. Use of Weyl Theorem
$\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: $\mathrm{X}_{1}, \ldots, X_{N}$ I.I.D.
- Structured random: Sobol Pick Freeze method

- Ergodic: FAST. Use of Weyl Theorem
$\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method

- Ergodic: FAST. Use of Weyl Theorem

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method
$\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
- Ergodic: FAST. Use of Weyl Theorem

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method
$\rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
$\rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime, \sim i}\right) . X^{\prime, \sim i}$ independent copy of $X^{\sim i}$.
- Ergodic: FAST. Use of Weyl Theorem

A crucial question: Sampling

- How we should sample the system $Y=F(X)$?
- Completely random?
- Structured random?
- Ergodic?
- Here in our discussion:
- Completely random: X_{1}, \ldots, X_{N} I.I.D.
- Structured random: Sobol Pick Freeze method

$$
\begin{aligned}
& \rightarrow X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right), \\
& \rightarrow \tilde{X}_{1}, \ldots, \tilde{X}_{N} \cdot \tilde{X}=\left(X^{i}, X^{\prime, i}\right) . X^{\prime \prime \sim i} \text { independent copy of } X^{\sim i} .
\end{aligned}
$$

- Ergodic: FAST. Use of Weyl Theorem

$$
\rightarrow X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)
$$

Frame I.I.D. Sample

- X scalar components
- $Y=F(X), X_{1}, \cdots X_{N}$ independent copies of X and $Y_{1}, \cdots X_{N}$ at hand
- Assume that (X, Y) has a smooth probability density $g(x, y)$

$$
Y=r_{i}\left(X^{i}\right)+\varepsilon_{i}
$$

- We have $r_{i}(x)=\frac{\int y g(x, y) d y}{\int g(x, y) d y} S_{i}=\frac{\operatorname{Var} r_{i}\left(X^{i}\right)}{\operatorname{Var} Y}=1-\frac{\operatorname{Var} \varepsilon_{i}}{\operatorname{Var} Y}=1-\frac{\mathbb{E}\left[\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}\right)\right]}{\operatorname{Var} Y}$

Frame I.I.D. Sample

- X scalar components
- $Y=F(X), X_{1}, \cdots X_{N}$ independent copies of X and $Y_{1}, \cdots X_{N}$ at hand
- Assume that (X, Y) has a smooth probability density $g(x, y)$

$$
Y=r_{i}\left(X^{i}\right)+\varepsilon_{i}
$$

- $r_{i}\left(X^{i}\right):=\mathbb{E}\left[F(X) \mid X^{i}\right]=F_{i}\left(X^{i}\right)+\mathbb{E}[F(X)]$ and $\varepsilon_{i}:=F(X)-\mathbb{E}\left[F(X) \mid X^{i}\right]-\mathbb{E}[F(X)]$
- We have

$$
r_{i}(x)=\frac{\int y g(x, y) d y}{\int g(x, y) d y} S_{i}=\frac{\operatorname{Var} r_{i}\left(X^{i}\right)}{\operatorname{Var} Y}=1-\frac{\operatorname{Var} \varepsilon_{i}}{\operatorname{Var} Y}=1-\frac{\mathbb{E}\left[\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}\right)\right]}{\operatorname{Var} Y}
$$

Plugging approach

- Plugging approach developped in S. Da Veiga, F. Wahl and FG Technometrics, [3]
- Plugging estimators based on nonparametric estimates of $r_{i}(x)$ or of $\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}=x\right)$ (local polynomial) and a second sample X_{1},
- Convenient plugging method. Drawback not the optimal rate!!

Plugging approach

- Plugging approach developped in S. Da Veiga, F. Wahl and FG Technometrics, [3]
- Plugging estimators based on nonparametric estimates of $r_{i}(x)$ or of $\mathbb{E}\left(\varepsilon_{i}^{2} \mid X^{i}=x\right)$ (local polynomial) and a second sample $X_{1}, \cdots, X_{N^{\prime}}$

$$
\begin{aligned}
& \widehat{S}_{i}=\frac{\operatorname{Var}_{N^{\prime}} \widehat{r}_{i}\left(X^{i}\right)}{\operatorname{Var}_{N^{\prime}} Y} \\
& \widehat{\widehat{S}}_{i}=1-\frac{\mathbb{E}_{N^{\prime}} \mathbb{E}\left(\varepsilon_{\left(\varepsilon_{i}^{2} \mid X^{i}\right)}^{\operatorname{Var}_{N^{\prime}} Y}\right.}{}
\end{aligned}
$$

- Convenient plugging method. Drawback not the optimal rate!!

Efficient estimation of non linear functional

S. Da Veiga and FG Journal of nonparametric statistics [2]

One wish to estimate

$$
\operatorname{Var}\left(\mathbb{E}\left(Y \mid X^{i}\right)\right)=\mathbb{E}\left(\mathbb{E}\left(Y \mid X^{i}\right)^{2}\right)-(\mathbb{E}(Y))^{2}
$$

One wish to estimate

$$
T(g)=\mathbb{E}\left(\mathbb{E}\left(Y \mid X^{i}\right)^{2}\right)=\iint\left(\frac{\int y g(x, y) d y}{\int g(x, y) d y}\right)^{2} g(x, y) d x d y
$$

We follow a method developed by B. Laurent in Annals of Stats [11]: expansion of $\mathrm{T}(\mathrm{g})$ around a preliminary estimator \hat{g} and optimal estimation of a quadratic functional

Expansion of $\mathrm{T}(\mathrm{g})$

$$
\begin{aligned}
& T(g)=\iint\left[2 y \widehat{r}_{i}(x)-\widehat{r}_{i}(x)^{2}\right] g(x, y) d x d y \\
+ & \iiint \frac{1}{\left(\int \hat{g}(x, y) d y\right)}\left[y z+\widehat{r}_{i}(x)^{2}-(y+z) \widehat{r}_{i}(x)\right] g(x, y) g(x, z) d x d y d z \\
+ & \Gamma_{n} \\
= & \iiint_{n} H(\hat{g}, x, y) g(x, y) d x d y+\iiint K(\hat{g}, x, y, z) g(x, y) g(x, z) d x d y d z \\
+ & \Gamma_{n}
\end{aligned}
$$

Here

$$
\begin{aligned}
\mathrm{H}(\hat{\mathrm{~g}}, x, y) & =2 \hat{\mathrm{r}}_{i}(x)-\widehat{\mathrm{r}}_{i}(x)^{2} \\
\mathrm{~K}(\hat{\mathrm{~g}}, x, y, z) & =\frac{1}{\left(\int \hat{g}(x, y) d y\right)}\left[y z+\widehat{r}_{i}(x)^{2}-(y+z) \widehat{r}_{i}(x)\right]
\end{aligned}
$$

$\left.\widehat{T(g)}=\iint H(\hat{g}, x, y) g(x, y) d x d y+\iiint K(\hat{g}, x, y, z) \widehat{g(x, y}\right) g(x, z) d x d y d z$

Theorem

$\widehat{\mathrm{T}(\mathrm{g})}$ is convergent and asymptotically Gaussian. Its asymptotic variance is

$$
C(f)=4 \mathbb{E}\left(\operatorname{Var}\left(Y \mid X^{i}\right) \mathbb{E}\left(Y \mid X^{i}\right)^{2}\right)+\operatorname{Var}\left(\mathbb{E}\left(Y \mid X^{i}\right)^{2}\right) .
$$

This is the optimal variance (semiparametric efficiency!!)

Analytical example

$$
\begin{aligned}
Y= & 0.2 \exp \left(X^{1}-3\right)+2.2\left|X^{2}\right|+1.3\left(X^{2}\right)^{6}-2\left(X^{2}\right)^{2}-0.5\left(X^{2}\right)^{4}-0.5\left(X^{1}\right)^{4} \\
& +2.5\left(X^{1}\right)^{2}+0.7\left(X^{1}\right)^{3}+\frac{3}{\left(8 X^{1}-2\right)^{2}+\left(5 X^{2}-3\right)^{2}+1}+\sin \left(5 X^{1}\right) \cos \left(3\left(X^{1}\right)^{2}\right)
\end{aligned}
$$

$$
F\left(X^{1}, X^{2}\right)
$$

Kriging (theoretical curve, approximation)

$$
\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{1}\right)
$$

$$
\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{2}\right)
$$

Local polynomial (theoretical curve, approximation)

$$
\mathbb{E}\left(\mathrm{Y} \mid \mathrm{X}^{2}\right)
$$

Analytical example

		Kriging	Loc poly	Eff. est
		100 pts	100 pts	100 pts
$\operatorname{Var}\left(\mathbb{E}\left(Y \mid \mathrm{X}^{1}\right)\right)$	1.0932	1.0539	1.0643	1.1701
$\operatorname{Var}\left(\mathbb{E}\left(Y \mid \mathrm{X}^{2}\right)\right)$	0.0729	0.1121	0.0527	0.0939

X^{1} : quite identical results
X^{2} : marginal approximations are better

Sobol Pick freeze sampling scheme

Sobol Pick freeze sampling scheme

- $X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,

Sobol Pick freeze sampling scheme

- $X_{1}, \ldots, X_{N}, F\left(X_{1}\right), \ldots, F\left(X_{N}\right)$,
- $\tilde{X}_{1}, \ldots, \tilde{X}_{N} F\left(\tilde{X}_{1}\right), \ldots, F\left(\tilde{X}_{N}\right)$. With $\tilde{X}=\left(X^{i}, X^{\prime, \sim i}\right) . X^{\prime, \sim i}$ is an independent copy of X^{\sim}.

Why this sampling scheme?

Intuition beyond. Example d=2

- In hand: $\left(\left(X_{1}^{1}, X_{N}^{2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{2}\right)\right)$ and $\left(\left(X_{1}^{1}, X_{N}^{\prime 2}\right)\right.$,
- Hoeffding decomposition

$$
\begin{aligned}
& \rightarrow F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
& \rightarrow F\left(X^{1}, X^{1,2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{1,2}\right)+F_{1,2}\left(X^{1}, X^{1,2}\right)
\end{aligned}
$$

- Obviously

and

$$
\iiint{\left.\operatorname{Fov}\left(F_{1,2}\left(X^{1}, X^{2}\right)\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right)}_{\left.F_{1,2}\left(x^{1}, x^{2}\right)\right) F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)}
$$

Why this sampling scheme?

Intuition beyond. Example d=2

- In hand: $\left(\left(X_{1}^{1}, X_{N}^{2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{2}\right)\right)$ and $\left(\left(X_{1}^{1}, X_{N}^{\prime 2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{\prime, 2}\right)\right)$
- Hoeffding decomposition

$$
\begin{aligned}
& \rightarrow \mathrm{F}\left(X^{1}, X^{2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(X^{1}\right)+\mathrm{F}_{2}\left(X^{2}\right)+\mathrm{F}_{1,2}\left(X^{1}, X^{2}\right) \\
& \rightarrow \mathrm{F}\left(\mathrm{X}^{1}, \mathrm{X}^{\prime, 2}\right)=\mathrm{F}_{\emptyset}+\mathrm{F}_{1}\left(X^{1}\right)+\mathrm{F}_{2}\left(\mathrm{X}^{\prime, 2}\right)+\mathrm{F}_{1,2}\left(X^{1}, X^{\prime, 2}\right)
\end{aligned}
$$

- Obviously

Why this sampling scheme?

Intuition beyond. Example d=2

- In hand: $\left(\left(X_{1}^{1}, X_{N}^{2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{2}\right)\right)$ and $\left(\left(X_{1}^{1}, X_{N}^{\prime 2}\right), \cdots,\left(X_{N}^{1}, X_{N}^{\prime, 2}\right)\right)$
- Hoeffding decomposition

$$
\begin{aligned}
& \rightarrow F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
& \rightarrow F\left(X^{1}, X^{\prime, 2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{\prime, 2}\right)+F_{1,2}\left(X^{1}, X^{\prime, 2}\right)
\end{aligned}
$$

- Obviously

$$
\begin{aligned}
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right) & =\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right) \\
& \left.+\operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right)\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\left.\operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right)\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right)= \\
\iiint \\
\left.F_{1,2}\left(x^{1}, x^{2}\right)\right) F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)
\end{gathered}
$$

Why this sampling scheme?

Continuation Obviously

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right) \\
& =\iint\left(\int F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)\right) F_{1,2}\left(x^{1}, x^{2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right)=0
\end{aligned}
$$

Hence,

So that,

$$
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)=\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right)
$$

$$
\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right)=\operatorname{Cov}_{N}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)
$$

Why this sampling scheme?

Continuation Obviously

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right) \\
& =\iint\left(\int F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)\right) F_{1,2}\left(x^{1}, x^{2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right)=0
\end{aligned}
$$

So that,

$$
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)=\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right)
$$

Why this sampling scheme?

Continuation Obviously

$$
\begin{aligned}
& \operatorname{Cov}\left(F_{1,2}\left(X^{1}, X^{2}\right), F_{1,2}\left(X^{1}, X^{\prime, 2}\right)\right) \\
& =\iint\left(\int F_{1,2}\left(x^{1}, x^{\prime, 2}\right) P_{X_{2}}\left(d x^{\prime, 2}\right)\right) F_{1,2}\left(x^{1}, x^{2}\right) P_{X_{1}}\left(d x^{1}\right) P_{X_{2}}\left(d x^{2}\right)=0
\end{aligned}
$$

Hence,

$$
\operatorname{Cov}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)=\operatorname{Var}\left(F_{1}\left(X^{1}\right)\right)
$$

So that,

$$
\operatorname{Var}\left(\overline{F_{1}\left(X^{1}\right)}\right)=\operatorname{Cov}_{N}\left(F\left(X^{1}, X^{2}\right), F\left(X^{1}, X^{\prime, 2}\right)\right)
$$

Sobol pick freeze estimator of S_{i}

$$
S_{i}=\frac{\operatorname{Cov}(F(X), F(\tilde{X}))}{\frac{\operatorname{Var}[F(X)]+\operatorname{Var}[F(\tilde{X})]}{2}}
$$

$$
\widehat{S}_{i}=\frac{\operatorname{Cov}_{N}(F(X), F(\tilde{X}))}{\frac{\left.\operatorname{Var}_{N} F(X)\right]+\operatorname{Var}_{N}[F(\tilde{X})]}{2}}
$$

Theorem (A. Janon, T. Klein, A. Lagnoux, C. Prieur, M. Nodet

 ESAIM P\&S (2014)\widehat{S}_{i} is an efficient estimator of the Sobol indice S_{i}. That is, this estimator is asymptotically Gaussian and asymptotically reaches the semi-parametric Cramér-Rao Bound.

Sobol pick freeze estimator of S_{i}

$$
\begin{aligned}
S_{i} & =\frac{\operatorname{Cov}(F(X), F(\tilde{X}))}{\frac{\operatorname{Var}[F(X)]+\operatorname{Var}[F(\tilde{X})]}{2}} \\
\widehat{S}_{i} & =\frac{\operatorname{Cov}_{N}(F(X), F(\tilde{X}))}{\frac{\operatorname{Var}_{N}[F(X)]+\operatorname{Var}_{N}[F(\tilde{X})]}{2}}
\end{aligned}
$$

Theorem (A. Janon, T. Klein, A. Lagnoux, C. Prieur, M. Nodet

ESAIM P\&S (2014)[8])
\widehat{S}_{i} is an efficient estimator of the Sobol indice S_{i}. That is, this estimator is asymptotically Gaussian and asymptotically reaches the semi-parametric Cramér-Rao Bound.

Sobol pick freeze estimator of S_{i}

$$
\begin{aligned}
S_{i} & =\frac{\operatorname{Cov}(F(X), F(\tilde{X}))}{\frac{\operatorname{Var}[F(X)]+\operatorname{Var}[F(\tilde{X})]}{2}} \\
\widehat{S}_{i} & =\frac{\operatorname{Cov}_{N}(F(X), F(\tilde{X}))}{\frac{\operatorname{Var}_{N}[F(X)]+\operatorname{Var}_{N}[F(\tilde{X})]}{2}}
\end{aligned}
$$

Theorem (A. Janon, T. Klein, A. Lagnoux, C. Prieur, M. Nodet ESAIM P\&S (2014)[8])
\widehat{S}_{i} is an efficient estimator of the Sobol indice S_{i}. That is, this estimator is asymptotically Gaussian and asymptotically reaches the semi-parametric Cramér-Rao Bound.

Further results: sharp asymptotic

satisfies both exponential inequalities and a Berry-Esseen Theorem .

Exponential inequality $\mathbb{P}\left(\left|\hat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.

- Berry-Esseen Theorem: precise bound on the error made when using CLT.

Further results: sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Statistics [5])
\widehat{S}_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\hat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.
- Berry-Esseen Theorem: precise bound on the error made when using CLT.

Further results: sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Statistics [5])
\widehat{S}_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.
\checkmark Berry-Esseen Theorem: precise bound on the error made when using CLT.

Further results: sharp asymptotic

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux, C. Prieur Statistics [5])
\widehat{S}_{i} satisfies both exponential inequalities and a Berry-Esseen Theorem .

- Exponential inequality $\mathbb{P}\left(\left|\widehat{S}_{i}-S_{i}\right| \geqslant t\right) \leqslant \exp (-N \psi(t)), \psi(t)>0$.
- Berry-Esseen Theorem: precise bound on the error made when using CLT.

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux EJS [6])

Sobol indice may be qeneralized in an Euclidean and Hillbertian context, imposing isometric invariance

- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux EJS [6])

- Sobol indice may be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux EJS [6])

- Sobol indice may be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.
- $F(X) \in \mathbb{H}$. \mathbb{H} being Euclidean or Hilbert space $\left(\mathbb{R}^{k}, L^{2}, \ldots.\right)$

Euclidean and Hilbert extensions

Theorem (F. G, A. Janon, T. Klein, A. Lagnoux EJS [6])

- Sobol indice may be generalized in an Euclidean and Hilbertian context, imposing isometric invariance
- Pick freeze method has Euclidean and Hilbertian extensions (F is vectorial or functional valued). Furthermore, the extended estimate has also many very nice properties of that obtained in the scalar case.
- $F(X) \in \mathbb{H}$. \mathbb{H} being Euclidean or Hilbert space $\left(\mathbb{R}^{k}, L^{2}, \ldots.\right)$
- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum \quad F_{A}\left(X^{A}\right), F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is $a L^{2}$ r.v. in \mathbb{H} and $u \in \mathbb{H}$

Isometric invariance+ sum to 1 again!! $1=\sum_{A} \subset\{1, \ldots, d\} S_{A}$

- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski RESS [10]

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

Isometric invariance+ sum to 1 again!! $1=\sum_{A \subset\{1, \ldots, d\}} S_{A}$

- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski RESS [10]

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), \quad F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

$$
S_{i}:=\frac{\operatorname{Tr}\left[\operatorname{Var} F_{A}\left(X^{A}\right)\right]}{\operatorname{Tr}[\operatorname{Var} F(X)]}
$$

- Isometric invariance+ sum to 1 again!! $1=\sum_{A \subset\{1, \ldots, d\}} S_{A}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski RESS [10]

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), \quad F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

$$
S_{i}:=\frac{\operatorname{Tr}\left[\operatorname{Var} F_{A}\left(X^{A}\right)\right]}{\operatorname{Tr}[\operatorname{Var} F(X)]}
$$

- Isometric invariance+ sum to 1 again!! $1=\sum_{A \subset\{1, \ldots, d\}} S_{A}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski RESS [10]

Euclidean and Hilbert extensions-Continuation

- Hoeffding still holds (one dimensional by duality)

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right), F_{A}\left(X^{A}\right) \in \mathbb{H}
$$

- Set $\operatorname{Var}(\langle u, Z\rangle)=\langle u,(\operatorname{Var} Z) u\rangle . Z$ is a L^{2} r.v. in \mathbb{H} and $u \in \mathbb{H}$

$$
S_{i}:=\frac{\operatorname{Tr}\left[\operatorname{Var} F_{A}\left(X^{A}\right)\right]}{\operatorname{Tr}[\operatorname{Var} F(X)]}
$$

- Isometric invariance+ sum to 1 again!! $1=\sum_{A \subset\{1, \ldots, d\}} S_{A}$
- Indices first discussed in M. Lamboni, H. Monod, and D. Makowski RESS [10]

A very fast journey on FAST

Very nice work using Weyl Theorem and harmonic analysis
$-X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{i-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$

- Tissot, J.-Y. and Prieur, C. RESS [13]

A very fast journey on FAST

Very nice work using Weyl Theorem and harmonic analysis

- $X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$
- Tissot, J.-Y. and Prieur, C. RESS [13]

A very fast journey on FAST

Very nice work using Weyl Theorem and harmonic analysis

- $X_{1}, \ldots, X_{N}, X_{j}:=\left(R_{\alpha_{1}}\left(X_{j-1}^{1}\right), R_{\alpha_{2}}\left(X_{j-1}^{2}\right), \cdots, R_{\alpha_{d}}\left(X_{j-1}^{d}\right)\right)$
- Tissot, J.-Y. and Prieur, C. RESS [13]

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

Hoeffding decomposition revisited

Functional ANOVA: case of dependent inputs (Hooker [7])
\rightarrow Assume that X has a lower/upper bounded density with respect to the product of its marginals

Thenrom IG Chacainn
F may be written in an unique way as a sum:

Where, X^{A} is uncorrelated with X^{B} as soon as $A \subset B$.
example: $d=2$

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset} \perp F_{i}, F_{1,2} \perp F_{i}, F_{1,2} \perp F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Hoeffding decomposition revisited

Functional ANOVA: case of dependent inputs (Hooker [7])
\rightarrow Assume that X has a lower/upper bounded density with respect to the product of its marginals

Hoeffding decomposition revisited

Functional ANOVA: case of dependent inputs (Hooker [7])
\rightarrow Assume that X has a lower/upper bounded density with respect to the product of its marginals

Theorem (G. Chasaing, F. G, C. Prieur EJS [1])

F may be written in an unique way as a sum:

$$
F(X)=\sum_{A \subset\{1, \ldots, d\}} F_{A}\left(X^{A}\right)
$$

Where, X^{A} is uncorrelated with X^{B} as soon as $A \subset B$.
example: $\mathrm{d}=2$

$$
\begin{gathered}
F\left(X^{1}, X^{2}\right)=F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)+F_{1,2}\left(X^{1}, X^{2}\right) \\
F_{\emptyset} \perp F_{i}, F_{1,2} \perp F_{i}, F_{1,2} \perp F_{\emptyset} \\
F_{1,2}\left(X^{1}, X^{2}\right)=F\left(X^{1}, X^{2}\right)-\left[F_{\emptyset}+F_{1}\left(X^{1}\right)+F_{2}\left(X^{2}\right)\right]
\end{gathered}
$$

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

6 End

7 Bibliography

Openness to other problems

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MCS [9])
\rightarrow Following: I. Sobol, S. Kucherenko Maths and Computers in Simulation (Gaussian and uniform cases)[12]
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities
\rightarrow Bound on Sobol global index by using Poincaré inequality
- From variance to Cramér von Mises distance (F. G. A. Lagnoux, T.

Klein Arxiv [4])
\rightarrow Hoeffding decomposition of $1_{\text {[F }(X)}$
\rightarrow Cramér von Mises distance between the laws of $F(X)$ and $F(X)$ knowing \bar{X}_{j}
\rightarrow Normalized indices and Pick Freeze algorithm
\rightarrow Good asymptotic properties

Openness to other problems

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MCS [9])
\rightarrow Following: I. Sobol, S. Kucherenko Maths and Computers in Simulation (Gaussian and uniform cases)[12]
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities
\rightarrow Bound on Sobol global index by using Poincaré inequality

Openness to other problems

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MCS [9])
\rightarrow Following: I. Sobol, S. Kucherenko Maths and Computers in Simulation (Gaussian and uniform cases)[12]
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities
\rightarrow Bound on Sobol global index by using Poincaré inequality
- From variance to Cramér von Mises distance (F. G, A. Lagnoux, T. Klein Arxiv [4])
\rightarrow Hoeffding decomposition of $1_{\text {(F }}$
\rightarrow Cramér von Mises distance between the laws of $F(X)$ and $F(X)$ knowing X_{j}
\rightarrow Normalized indices and Pick Freeze algorithm
\rightarrow Good asymptotic properties

Openness to other problems

- Derivative-based global sensitivity measures (M. Lamboni, , B. looss, A.-L. Popelin, F. G, MCS [9])
\rightarrow Following: I. Sobol, S. Kucherenko Maths and Computers in Simulation (Gaussian and uniform cases)[12]
\rightarrow Make use of world expertise of Institut de Mathématiques de Toulouse on functional inequalities
\rightarrow Bound on Sobol global index by using Poincaré inequality
- From variance to Cramér von Mises distance (F. G, A. Lagnoux, T. Klein Arxiv [4])
\rightarrow Hoeffding decomposition of $\mathbf{1}_{\{\mathrm{F}(\mathrm{X}) \leqslant t\}}$
\rightarrow Cramér von Mises distance between the laws of $F(X)$ and $F(X)$ knowing X_{j}
\rightarrow Normalized indices and Pick Freeze algorithm
\rightarrow Good asymptotic properties

Kick and follow for network construction

- Y a response variable. X a vector of explicative variables
- Does the value of Y depends on the coinfluence of X_{i} and X_{j} ?
- Compute an estimate of the order two Sobol index $S_{i j}$
- Threshold this estimate to build a network (if $\widehat{S}_{i j}>c$ draw an edge between i and j)

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

This is the end

CAM ON Thank you Gracias MERCI Obrigado Grazie

Overview

1 Sensitivity analysis: the Costa Brava consortium

2 Hoeffding decomposition

3 Sobol indices

4 Hoeffding decomposition revisited

5 Openness to other problems

6 End

7 Bibliography

Bibliography

[1] Gaëlle Chastaing, Fabrice Gamboa, Clémentine Prieur, et al. Generalized Hoeffding-Sobol decomposition for dependent variables-application to sensitivity analysis. Electronic Journal of Statistics, 6:2420-2448, 2012.
[2] Sébastien Da Veiga and Fabrice Gamboa. Efficient estimation of sensitivity indices. Journal of Nonparametric Statistics, 25(3):573-595, 2013.
[3] Sebastien Da Veiga, Francois Wahl, and Fabrice Gamboa. Local polynomial estimation for sensitivity analysis on models with correlated inputs. Technometrics, 51(4):452-463, 2009.
[4] F. Gamboa, T. Klein, and A. Lagnoux. Sensitivity analysis based on Cram \'er von Mises distance. ArXiv e-prints, June 2015.
[5] Fabrice Gamboa, Alexandre Janon, Thierry Klein, A Lagnoux, and Clémentine Prieur. Statistical inference for sobol pick-freeze Monte Carlo method. Statistics, 50(4):881-902, 2016.
[6] Fabrice Gamboa, Alexandre Janon, Thierry Klein, Agnès Lagnoux, et al. Sensitivity analysis for multidimensional and functional outputs. Electronic Journal of Statistics, 8(1):575-603, 2014.
[7] Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of dependent variables. Journal of Computational and Graphical Statistics, 2012.
[8] Alexandre Janon, Thierry Klein, Agnès Lagnoux, Maëlle Nodet, and Clémentine Prieur. Asymptotic normality and efficiency of two sobol index estimators. ESAIM: Probability and Statistics, 18:342-364, 2014.
[9] Matieyendou Lamboni, Bertrand looss, A-L Popelin, and Fabrice Gamboa. Derivative-based global sensitivity measures: general links with Sobol indices and numerical tests. Mathematics and Computers in Simulation, 87:45-54, 2013.
[10] Matieyendou Lamboni, Hervé Monod, and David Makowski. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability Engineering \& System Safety, 96(4):450-459, 2011.
[11] Béatrice Laurent et al. Efficient estimation of integral functionals of a density. The Annals of Statistics, 24(2):659-681, 1996.
[12] I.M. Sobol and S. Kucherenko. Derivative based global sensitivity measures and their link with global sensitivity indices. Mathematics and Computers in Simulation, 79(10):3009-3017, 2009.
[13] Jean-Yves Tissot and Clémentine Prieur. Bias correction for the estimation of sensitivity indices based on random balance designs. Reliability Engineering \& System Safety, 107:205-213, 2012.

