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Motivation

Biological Networks’ (NWs) examples

Protein-protein interaction NWs
Signaling pathways
Gene regulation NWs
Metabolic NWs
....

G. Gayraud LMAC, U.T.C. Bayesian modeling of biological networks 12-14 October 2016 3/15



Motivation

AIM
Graph Nodes Edges

Notation G V = (vi) E = (ei,j)
1 ≤ i ≤ N 1 ≤ i , j ≤ N

Observed NO X = (Xi,k )(i,k) NO
1 ≤ i ≤ N
1 ≤ k ≤ n

⇒GOAL: Infer on NW’s structure

How do we tackle the structure learning problem?

↪→ Probabilistic modeling of the graph G = {(V,E)} from X;
↪→ Statistical procedure to recover the structure of G;
↪→ Implementation and simulation study.
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Graph Modeling Directed Acyclic Graph (D.A.G.)

Bayesian Network (BN): probabilistic model of D.A.G.

A

B

D

C

N = 4
X = (XA,XB,XC ,XD)

Pa(·): Parents of ’·’;
Pa(XA) = ∅;
Pa(XB) = {XA,XC};
Pa(XC) = {XA};
Pa(XD) = {XB};
L(X|G): distribution of X
given G

↪→ Factorization definition of BN:

L(X|G) = L(XA|Pa(XA))L(XB|Pa(XB))L(XC |Pa(XC))L(XD|Pa(XD))

References:
Heckerman, Geiger and Chickering (1995) in Machine Learning
Pearl (1988) Book, Morgan Kaufmann Publishers
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Graph Modeling Directed graphs involving loop(s)

Loops considered as super nodes

A

B
D

C E

N = 5
X = (XA,XB,XC ,XD,XE )

L = Loop= super node
YL = (XA,XB,XC)

Pa(·): Parents of ’·’;
Pa(XD) = ∅;
Pa(YL) = {XD};
Pa(XE ) = {XC};

↪→ L(X|G) = L(YL|Pa(YL))× L(XD|Pa(XD))× L(XE |Pa(XE ))

References:
Bois, Datta, Gayraud (2016) work in preparation
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Graph Modeling Marginal likelihood

Models for acyclic parts
L(Xac|Pa(Xac)) =

∫
L(Xac|Pa(Xac), θac)dΠ(θac)

θac nuisance parameter
n: number of data per nodes;
Xac = (Xac,i)1≤i≤n; Pa(Xac) dim= n × k .

Discrete:{
θac,j,k = IP(Xac,i = k |Pa(Xac) = j , θac),
(θac,j,k )k ∼ Πj : Dirichlet prior

Continuous:
Xac |Pa(Xac), θac) ∼ Nn




1 Pa(X1,ac)
1 Pa(X2,ac)
. . . . . .
1 Pa(Xn,ac)




β1
β2
. . .
βk+1

 , λ−1In


θac = (β, λ) ∼ Π Normal Gamma prior OR g-Zellner prior
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Graph Modeling Marginal likelihood

Models for loops
L(YL|Pa(YL)) =

∫
L(YL|Pa(YL), θL)dΠ(θL)

A

B
D

C E

θL nuisance parameter
n: number of data per nodes;
YL = (X1, . . . ,Xl) dim = n × l ;
Pa(XL) dim= n × k .

Continuous:

YL =


1 Pa(X1,L)
1 Pa(X2,L)
. . . . . .
1 Pa(Xn,L)




β1,1 . . . β1,l
β2,1 . . . β2,l
. . .

βk+1,1 . . . βk+1,l

+ u,

u = (ui,j)1≤i≤n;1≤j≤l

ui
i.i.d .∼ Nl(0,Σ)

θL = (β,Σ) ∼ Π ∝ β × Inverse-Wishart
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Bayesian inference

Bayesian: random G

↪→ updated knowledge about G through the posterior distribution of G
1 Combine L(X|G) with the prior π to update the distribution of G|X,

i.e. the posterior distribution πX given the data X:

πX(G) ∝ L(X|G)× π(G)

Nice features:
It provides not only a single G but an updated distribution of G
πX(G) can be summarized through Bayesian estimates

How π may be chosen? ↪→ (a) belief/knowledge; (b) practical
choice: posterior tractable; (c) theoretical point of view
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Bayesian inference

Priors on G

Independent Bernoulli ei,j ∼ B(pi,j) with pi,j ∈ (0,1)

πB(G) =
∏

1≤i,j≤N

pei,j
i,j (1− pi,j)

1−ei,j

Degree prior,

πD(G) ∝
∏

1≤i≤N

N∑
j=1

e−γi,j with
∑N

j=1 ei,j > 0 and γ > 0

Concordance prior,
πC(G) ∝ exp(−ρ(

∑
(i,j)∈IẼ

|ai,j − ei,j |)) with the prior matrix

A = (ai,j)(i,j)∈IẼ
where ai,j ∈ {−1,1}, Ẽ ⊂ E and ρ > 0

. . .

↪→ Prior total: π(G) ∝ πB(G)× πD(G)× πC(G)× . . .
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Bayesian inference

MCMC algorithm (DAG)

Notation. Gt : current graph at the t-th iteration; Gp: proposal graph
1 Select (deterministic) et

i,j in E with i 6= j

2 ep
i,j |e

t
i,j ∼ B(pi,j) ep

i,j = 1 provided Gp is still a DAG

3 Acceptance ratio :

δ = min(1,
(
L(X|Gp)π(Gp)P(Gt |Gp)

L(X|Gt )π(Gt )P(Gp|Gt )

)
)

4 Choose Gt+1 =

{
Gp with probability δ
Gt with probability 1− δ
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Numerical experiments

DAG
simulated networks: 5 to 120 nodes; 100 data points per node
life biological network ”EGFR” : 14 nodes; 200 data points per node
continuous and discrete data (only discrete for the ”EGRF”)

LOOP
simulated networks with 5 and 14 nodes with 50 data points per
node
continuous data only

Performance analyses

Convergence : Gelman’R̂ convergence diagnostic
Comparison with Structmcmc (R Software): Mukherjee and Speed,
2008
Edge posterior distributions through their mean
Accuracy curve = (true positive edges + true negative edges)/
number of possible edges
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Numerical experiments

Structure learning; 10 million iterations with 1 million
burning runs

True graph:

A
C

B
D

E

↪→ Graph sampler Loop software written in C
Present edges with posterior greater than 0.5

A
C

B

D

E
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Conclusion

Concluding remarks

Directed graphs Modeling with different sets of structure prior
(concordance, Bernoulli, degree,...);
Sotfware/algorithms : time-efficient & convergent-efficient;

N Number of iterations Time
D.A.G. 30 2.107 ' 4.5 mn
D.A.G. 100 5.107 ' 15 mn
Loop 14 108 ' 25 mn

For DAG: works efficiently with 120 nodes and 100 data whatever
the nature of data (discrete or continuous)
For directed graphs involving loops: first time of such stochastic
modeling
Only on simulated data
Limitations : ultra-high dimension when N is huge compared to n
Verzelen, 2012 ”no statistical procedure can provide satisfying
results” when dmax log(N/dmax ) � n, dmax maximal degree
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