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Biological Networks’ (NWs) examples

o Protein-protein interaction NWs
o Signaling pathways

o Gene regulation NWs

o Metabolic NWs

Q ...
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Motivation

AIM
Graph | Nodes Edges
Notation G V=(v) E=(ey)
1<i<N 1<ij<N

Observed NO X = (Xik)ik | NO

=GOAL: Infer on NW’s structure

How do we tackle the structure learning problem?

o — Probabilistic modeling of the graph G = {(V,E)} from X;
o < Statistical procedure to recover the structure of G;
o — Implementation and simulation study.
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Graph Modeling

O Graph Modeling
o Directed Acyclic Graph (D.A.G.)
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Bayesian Network (BN): probabilistic model of D.A.G.

oN=4
@ o X = (Xa, Xa, Xc, Xp)
o Pa(-): Parents of "’;
(8) Pa(Xs) = 0);
Pa(Xp) = {Xa, Xc};
(A Pa(Xc) = {Xa):
Pa(XD) = {XB};
e o L(X|G): distribution of X
given G

— Factorization definition of BN:
L(X|G) = L(XalPa(Xa))L(Xs|Pa(Xg))L(Xc|Pa(Xc))L(XplPa(Xp))

References:

o Heckerman, Geiger and Chickering (1995) in Machine Learning
o Pearl (1988) Book, Morgan Kaufmann Publishers
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Graph Modeling

O Graph Modeling

o Directed graphs involving loop(s)
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Loops considered as super nodes

o N=5
o X = (Xa, X, Xc, Xp, XE)

o L = Loop= super node
YL = (Xa, Xs, Xc)

o Pa(:): Parents of "’;
Pa(Xp) =
Pa(Y.) = {XD}
Pa(Xe) = {Xc};

= L(X|G) = L(YL[Pa(YL)) x L(Xp|Pa(Xp)) x L(Xe|Pa(XE))

References:
o Bois, Datta, Gayraud (2016) work in preparation
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Models for acyclic parts

( ac‘Pa fﬁ ac‘Pa ac) eac)dn(eac)

@ fc nuisance parameter
o n: number of data per nodes;
0 Xac = (Xac,i)1§i§n§ Pa(Xzc) dim=n x k.

Discrete: _
eaCJ’k = ]P(Xac,i = k’Pa(Xac) = j’ eac)a
(Qacjk)k ~ Nj : Dirichlet prior

Continuous:
1 Pa(Xi ac) S
1 Pa(X
Xac|Pa(Xac), 020) ~ Ny (X2,ac) B2 BT

1 Pa(Xmac) ﬂk+1
Oac = (5, ) ~ N Normal Gamma prior OR g-Zellner prior
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Models for loops
(YL\Pa YL f/:, YL\Pa(YL) HL)dFI(QL)

@ 6, nuisance parameter

o n: number of data per nodes;
oY =(Xy,...,X))dm=nx I
o Pa(X,)dim=n x K.

Qontinuous:

1 Pa(Xi.) B4 ..o By
0 Y, = 1 Pa(Xp,) Boy ... Bay | U,
1 Pa(Xy.) Bk+1 1 oo Bryty

u = (Uij1<i<mi<j<
u; "% N(0, %)
[ 0L =(B,%) ~ M o 3 x Inverse-Wishart
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Bayesian inference

O Bayesian inference
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EpEEE ERaTe _

Bayesian: random G

— updated knowledge about G through the posterior distribution of G

@ Combine £(X|G) with the prior 7 to update the distribution of G|X,
i.e. the posterior distribution 7X given the data X:

(G) x L(XIG) x 7(G)

o Nice features:

o It provides not only a single G but an updated distribution of G
o 7*(G) can be summarized through Bayesian estimates

@ How 7 may be chosen? — (a) belief/knowledge; (b) practical

choice: posterior tractable; {e}-theoretical-point-of-view
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EpEEE ERaTe _

Priorson g

o Independent Bernoulli e;; ~ B(p; ;) with p;; € (0,1)
(@)= [ pi'(1—piy)' =2
1<ij<N
o Degree prior,

N
() < [[ D e with Y e, >0andy >0
1<i<N j=1
o Concordance prior,
mc(G) o exp(—p( Y |ajj — e;])) with the prior matrix
(i)l
A= (a))(ijel, Where a;; € {~1,1}, ECEand p > 0
Q ...

| Prior total: 7(G) o 75(G) x 7p(G) x 7(G) * . .. |
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Bayesian inference

MCMC algorithm ( )

Notation. G!: current graph at the t-th iteration; GP: proposal graph
O Select (deterministic) e,?’j in E with / # |

Q efj|e,t,j ~ B(pi))

O Acceptance ratio :

c(X|gP)w<gP>P<gf|g">))

§ = min(1, < L(X|G")n(G)P(GP|GY)

GP  with probability §

t+1 _
Q@ Choose g = { G!  with probability 1 — &
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Numerical experiments

O Numerical experiments
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NGRS R e _

o DAG
o simulated networks: 5 to 120 nodes; 100 data points per node
o life biological network "EGFR” : 14 nodes; 200 data points per node
o continuous and discrete data (only discrete for the "EGRF”)
o LOOP
o simulated networks with 5 and 14 nodes with 50 data points per
node
o continuous data only

o Performance analyses

o Convergence : Gelman’R convergence diagnostic

o Comparison with Structmemc (R Software): Mukherjee and Speed,
2008

o Edge posterior distributions through their mean

o Accuracy curve = (true positive edges + true negative edges)/
number of possible edges
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Uil G _

Structure learning; 10 million iterations with 1 million
burning runs

True graph:
— Graph_sampler_Loop software written in C
Present edges with posterior greater than 0.5

S
ON%0
o
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Conclusion

O Conclusion
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Concluding remarks

o Directed graphs Modeling with different sets of structure prior
(concordance, Bernoulli, degree,...);
o Sotfware/algorithms : time-efficient & convergent-efficient;

N | Number of iterations Time
D.AG. | 30 | 2.107 ~4.5mn
D.A.G. | 100 | 5.107 ~15mn
Loop | 14 [ 108 ~ 25 mn

o For DAG: works efficiently with 120 nodes and 100 data whatever
the nature of data (discrete or continuous)

o For directed graphs involving loops: first time of such stochastic
modeling

@ Only on simulated data

o Limitations : ultra-high dimension when N is huge compared to n
Verzelen, 2012 "no statistical procedure can provide satisfying
results” when dmax 109(N/dmax) =< n, dmax maximal degree
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