Bayesian modeling of biological networks

Frédéric Bois[‡], Ghislaine Gayraud^{*}, Sagnik Datta[†]

[‡] I.N.E.R.I.S * Laboratoire de Math. Appliquées de Compiègne, UTC [†] BMBI, UTC

Colloque CARTABLE, INRA-TOULOUSE

- Graph Modeling
- Bayesian inference
- Numerical experiments
- Conclusion

Biological Networks' (NWs) examples

- Protein-protein interaction NWs
- Signaling pathways
- Gene regulation NWs
- Metabolic NWs

o

AIM

	Graph	Nodes	Edges
Notation	G	$\mathbf{V} = (\mathbf{v}_i)$ $1 \le i \le N$	$\mathbf{E} = (\mathbf{e}_{i,j})$ $1 \leq i,j \leq N$
Observed	NO	$\mathbf{X} = (X_{i,k})_{(i,k)}$ $1 \le i \le N$ $1 \le k \le n$	NO

\Rightarrow GOAL: Infer on NW's structure

How do we tackle the structure learning problem?

- \hookrightarrow Probabilistic modeling of the graph $\mathcal{G} = \{(\mathbf{V}, \mathbf{E})\}$ from **X**;
- \hookrightarrow Statistical procedure to recover the structure of \mathcal{G} ;
- ullet \hookrightarrow Implementation and simulation study.

- Directed Acyclic Graph (D.A.G.)
- Directed graphs involving loop(s)
- Marginal likelihood

Bayesian inference

4 Numerical experiments

Bayesian Network (BN): probabilistic model of D.A.G.

● *N* = 4

$$\mathbf{X} = (X_A, X_B, X_C, X_D)$$

•
$$Pa(\cdot)$$
: Parents of '.';
 $Pa(X_A) = \emptyset$;
 $Pa(X_B) = \{X_A, X_C\}$;
 $Pa(X_C) = \{X_A\}$;
 $Pa(X_D) = \{X_B\}$;

L(X|*G*): distribution of X
 given *G*

 \hookrightarrow Factorization definition of BN:

 $\mathcal{L}(\mathbf{X}|\mathcal{G}) = \mathcal{L}(X_A|Pa(X_A))\mathcal{L}(X_B|Pa(X_B))\mathcal{L}(X_C|Pa(X_C))\mathcal{L}(X_D|Pa(X_D))$

References:

- Heckerman, Geiger and Chickering (1995) in Machine Learning
- Pearl (1988) Book, Morgan Kaufmann Publishers

G. Gayraud LMAC, U.T.C.

- Directed Acyclic Graph (D.A.G.)
- Directed graphs involving loop(s)
- Marginal likelihood

Bayesian inference

4 Numerical experiments

Loops considered as super nodes

● *N* = 5

•
$$\mathbf{X} = (X_A, X_B, X_C, X_D, X_E)$$

• L = Loop = super node $Y_L = (X_A, X_B, X_C)$

•
$$Pa(\cdot)$$
: Parents of '.';
 $Pa(X_D) = \emptyset$;
 $Pa(Y_L) = \{X_D\}$;
 $Pa(X_E) = \{X_C\}$;

 $\hookrightarrow \mathcal{L}(\mathbf{X}|\mathcal{G}) = \mathcal{L}(Y_L|\mathit{Pa}(Y_L)) \times \mathcal{L}(X_D|\mathit{Pa}(X_D)) \times \mathcal{L}(X_E|\mathit{Pa}(X_E))$

References:

Bois, Datta, Gayraud (2016) work in preparation

Models for acyclic parts $\mathcal{L}(X_{ac}|Pa(X_{ac})) = \int \mathcal{L}(X_{ac}|Pa(X_{ac}), \theta_{ac}) d\Pi(\theta_{ac})$

- θ_{ac} nuisance parameter
- n: number of data per nodes;

•
$$X_{ac} = (X_{ac,i})_{1 \le i \le n}$$
; $Pa(X_{ac}) \dim n \times k$.

Discrete:

$$\begin{cases} \theta_{ac,j,k} = \mathbb{P}(X_{ac,i} = k | Pa(X_{ac}) = j, \theta_{ac}), \\ (\theta_{ac,j,k})_k \sim \Pi_j : \text{ Dirichlet prior} \end{cases}$$

Continuous:

$$X_{ac}|Pa(X_{ac}), \theta_{ac}) \sim \mathcal{N}_n \left(\begin{pmatrix} 1 & Pa(X_{1,ac}) \\ 1 & Pa(X_{2,ac}) \\ \dots & \dots \\ 1 & Pa(X_{n,ac}) \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_{k+1} \end{pmatrix}, \lambda^{-1} I_n \right)$$

$$\theta_{ac} = (\beta, \lambda) \sim \Pi \text{ Normal Gamma prior OR } g\text{-Zellner prior}$$

Models for loops $\mathcal{L}(Y_L | Pa(Y_L)) = \int \mathcal{L}(Y_L | Pa(Y_L), \theta_L) d\Pi(\theta_L)$

- θ_L nuisance parameter
- n: number of data per nodes;
- $Y_L = (X_1, ..., X_l) dim = n \times l;$

•
$$Pa(X_L)$$
 dim= $n \times k$.

Continuous:

$$\begin{cases} Y_L = \begin{pmatrix} 1 & Pa(X_{1,L}) \\ 1 & Pa(X_{2,L}) \\ \dots & \dots \\ 1 & Pa(X_{n,L}) \end{pmatrix} \begin{pmatrix} \beta_{1,1} & \dots & \beta_{1,l} \\ \beta_{2,1} & \dots & \beta_{2,l} \\ \dots & \dots \\ \beta_{k+1,1} & \dots & \beta_{k+1,l} \end{pmatrix} + u, \\ u = (u_{i,j})_{1 \le i \le n; 1 \le j \le l} \\ u_i \stackrel{i.i.d.}{\sim} \mathcal{N}_l(0, \Sigma) \\ \theta_L = (\beta, \Sigma) \sim \Pi \propto \beta \times \text{Inverse-Wishart} \end{cases}$$

1)

А

В

Bayesian inference

Numerical experiments

Bayesian: random ${\mathcal G}$

 \hookrightarrow updated knowledge about ${\mathcal G}$ through the posterior distribution of ${\mathcal G}$

Combine L(X|G) with the prior π to update the distribution of G|X,
 i.e. the posterior distribution π^X given the data X:

 $\pi^{\mathsf{X}}(\mathcal{G}) \propto \mathcal{L}(\mathsf{X}|\mathcal{G}) imes \pi(\mathcal{G})$

Nice features:

- It provides not only a single ${\mathcal G}$ but an updated distribution of ${\mathcal G}$
- $\pi^{\mathbf{X}}(\mathcal{G})$ can be summarized through Bayesian estimates
- How π may be chosen? → (a) belief/knowledge; (b) practical choice: posterior tractable; (c) theoretical point of view

Priors on \mathcal{G}

- Independent Bernoulli $e_{i,j} \sim B(p_{i,j})$ with $p_{i,j} \in (0, 1)$ $\pi_B(\mathcal{G}) = \prod_{1 \le i,j \le N} p_{i,j}^{e_{i,j}} (1 - p_{i,j})^{1 - e_{i,j}}$
- Degree prior,

$$\pi_D(\mathcal{G}) \propto \prod_{1 \leq i \leq N} \sum_{j=1}^N \boldsymbol{e}_{i,j}^{-\gamma} \text{ with } \sum_{j=1}^N \boldsymbol{e}_{i,j} > 0 \text{ and } \gamma > 0$$

- Concordance prior, π_C(G) ∝ exp(-ρ(∑_{(i,j)∈I_Ĕ} |a_{i,j} - e_{i,j}|)) with the prior matrix A = (a_{i,j})_{(i,j)∈I_E} where a_{i,j} ∈ {-1,1}, Ẽ ⊂ E and ρ > 0
 ...
- $\hookrightarrow \text{Prior total: } \pi(\mathcal{G}) \propto \pi_B(\mathcal{G}) \times \pi_D(\mathcal{G}) \times \pi_C(\mathcal{G}) \times \dots$

MCMC algorithm (DAG)

Notation. \mathcal{G}^t : current graph at the *t*-th iteration; \mathcal{G}^p : proposal graph

- Select (deterministic) $e_{i,j}^t$ in **E** with $i \neq j$
- $\bigcirc e_{i,j}^{p} | e_{i,j}^{t} \sim B(p_{i,j}) \quad e_{i,j}^{p} = 1 \text{ provided } \mathcal{G}^{p} \text{ is still a DAG}$
- Acceptance ratio :

$$\delta = \min(1, \left(\frac{\mathcal{L}(\mathbf{X}|\mathcal{G}^{p})\pi(\mathcal{G}^{p})\boldsymbol{P}(\mathcal{G}^{t}|\mathcal{G}^{p})}{\mathcal{L}(\mathbf{X}|\mathcal{G}^{t})\pi(\mathcal{G}^{t})\boldsymbol{P}(\mathcal{G}^{p}|\mathcal{G}^{t})}\right))$$

• Choose
$$\mathcal{G}^{t+1} = \begin{cases} \mathcal{G}^{p} & \text{with probability } \delta \\ \mathcal{G}^{t} & \text{with probability } 1 - \delta \end{cases}$$

Bayesian inference

DAG

- simulated networks: 5 to 120 nodes; 100 data points per node
- life biological network "EGFR": 14 nodes; 200 data points per node
- continuous and discrete data (only discrete for the "EGRF")
- LOOP
 - simulated networks with 5 and 14 nodes with 50 data points per node
 - continuous data only
- Performance analyses
 - Convergence : Gelman'Â convergence diagnostic
 - Comparison with Structmcmc (R Software): Mukherjee and Speed, 2008
 - Edge posterior distributions through their mean
 - Accuracy curve = (true positive edges + true negative edges)/ number of possible edges

Structure learning; 10 million iterations with 1 million burning runs

True graph:

 $\hookrightarrow Graph_sampler_Loop \ software \ written \ in \ C$ Present edges with posterior greater than 0.5

- Graph Modeling
- Bayesian inference
- Numerical experiments

Concluding remarks

- Directed graphs Modeling with different sets of structure prior (concordance, Bernoulli, degree,...);
- Sotfware/algorithms : time-efficient & convergent-efficient;

	Ν	Number of iterations	Time
D.A.G.	30	2.10 ⁷	\simeq 4.5 mn
D.A.G.	100	5.10 ⁷	\simeq 15 mn
Loop	14	10 ⁸	\simeq 25 mn

- For DAG: works efficiently with 120 nodes and 100 data whatever the nature of data (discrete or continuous)
- For directed graphs involving loops: first time of such stochastic modeling
- Only on simulated data
- Limitations : ultra-high dimension when *N* is huge compared to *n* Verzelen, 2012 "no statistical procedure can provide satisfying results" when $d_{max} \log(N/d_{max}) \approx n$, d_{max} maximal degree