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A challenging problem

Inference

≈ 10s/1,000s assays

≈ 1,000s/1,000,000s features
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g4 g5
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g10

g11

g12

g13

1. Nodes are fixed

I restricted to a set of interest

2. Edges (interactions) are inferred

I based upon statistical
concepts

Main statistical challenges

1. (Ultra) High dimensionality (n < p, n≪ p)

2. Heterogeneity/structure of the data

Exploratory research

By pointing important actors (genes, OTU), it may assist the biologist in

1. formulating a hypothesis for further experiments,

2. unraveling main tendencies at play in complex systems.
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Outline

Canonical framework: sparse GGM

Accounting for some biological features

Network inference for enhancing other methods
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Gaussian Graphical Model: canonical settings

Biological experiments in comparable Gaussian conditions

Profiles of a set P = {1, . . . , p} of genes is described by X ∈ Rp such as

1. X ∼ N (µ,Σ), with Θ = Σ−1 the precision matrix.

2. a sample (X 1, . . . ,X n) of exp. stacked in an n × p data matrix X.

Conditional independence structure
(i , j ) /∈ E ⇔ Xi ⊥⊥ Xj |X\{i ,j} ⇔ ρij |\{i ,j} = − Θij√

ΘiiΘjj

= 0.

Graphical interpretation

G = (P, E)

X1
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X4

X3 X5

X6

X7

Θ
X1

X1

X2

X2

X3

X3

X4

X4

X5

X5

X6

X6

X7

X7

 “Covariance” selection

The data

Stacking (X 1, . . . ,X n), we met the usual individual/variable table X

stacked in X =

x 1
1 x 2

1 x 3
1 . . . xp

1
...
x 1
n x 2

n x 2
1 . . . xp

n
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Existing inference approach I
Limited-order partial correlations

Partial order correlation

For some sets U with |U| ≤ q and V = U ∪ {i , j}, the q-order partial
correlation, for q ∈ {0, . . . , p − 2}, is

ρij |U = −
ΘVij√
ΘViiΘ

V
jj

where ΘV = (ΣVV)−1 .

Basic procedure

I test the hypotheses ρij |U = 0 for every U such that |U| = q ,

I i ↔ j ∈ G iff all hypotheses are rejected.

Developments: Wille and Buhlmann (2006); Castelo and Roverato
(2006); Verzelen, Villers (2008) . . .
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I test the hypotheses ρij |U = 0 for every U such that |U| = q ,

I i ↔ j ∈ G iff all hypotheses are rejected.

Developments: Wille and Buhlmann (2006); Castelo and Roverato
(2006); Verzelen, Villers (2008) . . .

limitations

I Computationally expansive (C p−2
q tests + mat. inversion).

I Remains an approximation of the true graph

I Need mutiple-test correction

I Not adapted to high-dimensional data
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Existing inference approach II
Bayesian GGM

For G = (V, E) be the conditional graph associated to X ∼ N (0,Θ−1),

P(G,Θ|X) ∝ P(X|G,Θ)P(Θ|G)P(G)

with P(X|G,Θ) the Gaussian multivariate likelihood.

Priors

I Uniform distribution over a set GS or truncated Poisson

P(G) =
1

|GS |
, P(G) ∝

γ|E|

|E|!
.

I G-Wishart over the space PG of p.d matrices with same support as G

P(Θ|G) =
1

Z (T)
|Θ|(d−2)/2 exp

{
1

2
tr(TΘ)

}
.

Z is computed by MCMC schemes.

 See Löıc’s work tomorrow 7



Existing inference approach III
Regularization/penalized likelihood approach

Let Θ be the model parameter to infer (related to the edges).

Constraint optimization approach

Θ̂λ = arg max
Θ

log `(Θ; X) s.t. Ω(Θ) ≤ c

Convex optimization approach

Θ̂λ = arg min
Θ
− log `(Θ; X) + λ pen`1(Θ),

I log ` is the model log-likelihood,

I Ω and c define a feasible set.

I pen is a penalty function controlled by λ.
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A geometric view of sparsity
`(

Θ
1
,Θ

2
)

Θ2 Θ1

{
maximize

Θ1,Θ2

`(Θ1,Θ2)

s.t. Ω(Θ1,Θ2) ≤ c

m
minimize

Θ1,Θ2

−`(Θ1,Θ2) + λΩ(Θ1,Θ2)

Ω ≡ pen`1 is a penalty tuned by λ > 0.
It performs

1. regularization (n � p),

2. selection (induced by `1),

3. can be seen as a log-prior on Θ.
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Gold standard penalized approach
Use `1 for both regularizing and promoting sparsity

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008)

Θ̂λ = arg max
Θ∈S+

`(Θ; X)− λ‖Θ‖1

I symmetric, positive-definite

I solved by the “Graphical-Lasso” (O(p3), Friedman et al, 2007).

I R packages huge, QUIC, fastclime, flare, . . .

Extensions to non-Gaussian case

I Simple transformation: often surprisingly efficient
 log(1 + X),

√
X, compute Spearman’s correlation

I Non-paranormal transformation (Liu et al 2009)
 copula

I Poisson models (Allen et al, Gallopin et al.)
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Properties

Theoretical results

I Selection consistency (Ravikumar et al. 2009-’12). For an
“appropriate”λ,

n ≈ O(d2 log(p)) with d = max
j∈P

(degreej)

I Ultra high-dimension phenomenon (Verzelen, 2011). Occur when

d log(p/d)

n
≥ 1/2, (e.g.,n = 50, p = 200, d ≥ 8).

Computational capability (’14 NIPS submissions)

I Solve GLASSO/CLIME for p = 106 (on 400 cores).

I based on alternating direction method of multipliers (ADMM)

I + many tricks
11



Model selection: what λ?

Cross-validation

Optimal in terms of prediction, not in terms of selection

Information based criteria

I GGMSelect (Girault et al, ’12) selects among a family of candidates.

I Adapt IC to sparse high dimensional problems, e.g.

EBICγ(Θ̂λ) = −2loglik(Θ̂λ; X) + |Eλ|(log(n) + 4γ log(p)),

Resampling/subsampling

Keep edges frequently selected on an range of λ after sub-samplings

I Stability Selection (Meinshausen and Bühlman, 2010, Bach 2008)

I Stability approach to Regularization Selection (StaRS) (Liu, 2010).
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Limitations towards biological network inference

I Sparse GGM

+ very solid statistical and computational framework
+ extend to non strictly normal distribution (NGS)

I Guillem’s talk + DREAM challenge

+ competitive to other inference methods
− performances remain questionable on real data, as for other methods

Ideas

Strengthen the inference by accounting for biological features

1. structure of the network (organization of biological mechanisms)

2. sample heterogeneity (structure of the population)

3. horizontal integration (use multiple data and platforms)

13
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Canonical framework: sparse GGM

Accounting for some biological features
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Accouting for sample heterogeneity
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Handling with the data structure and scarcity
By introducing some prior

Priors should be biologically grounded

1. not too many genes effectively interact: sparsity,

2. networks are organized: latent clustering.

A1 A2

A3

B1

B2

B3

B4

B5

C1

C2

16



Structured regularization

SIMoNe: Statistical Inference for MOdular NEtworks

arg max
Θ,Z

`(Θ; X)− λ ‖PZ ?Θ‖`1 ,

where PZ is a matrix of weights depending on a underlying latent
structure Z (depicted through a stochastic block model).

 Cluster-driven inference via an EM-like strategy.

Ambroise, Chiquet, Matias. Inferring sparse GGM with latent structure, EJS, 2009.

Marlin, Schmidt, Murphy: similar Bayesian work UCI 2010.

Wong et al., close update: Adaptive Graphical Lasso, 2014.

Chiquet et al., SIMoNe R-package (needs updates. . . ), Note Bioinformatics, 2009.
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How to come up with a latent clustering?

Inference: Stochastic Bloc Model (SBM) cf. Timothée’s talk

I Spread the nodes into Q classes with P(i ∈ q) = αq ;

I Connexion probabilities depend upon node classes:

P(i ↔ j |i ∈ class q , j ∈ class `) = πq`.

EM-strategy - conditional expectation to maximize

Q
(
Θ|Θ(m)

)
= E

{
log `(X,Θ,Z)|X; Θ(m);π,α

}
=
∑
Z∈Z

P
(
Z|Θ(m)

)
log `(X,Θ,Z).

I The E step requires a variational estimation (Ẑ)

I The M step is a weighted graphical-Lasso problem (Θ̂)

I The weights are such that PZ ∝ 1− π̂q`.
18



Illustration on breast Cancer
Prediction of the outcome of preoperative chemotherapy

Hess et al.

Journal. of Clinical

Oncology, 2006.

Data set

133 patients classified as

1. pathologic complete
response,

2. residual disease,

according to a signature of
26 genes (small network).

Choice fixed to 30 edges

AMFR

BB_S4
BECNI

BTG3

CA12

CTNND2

E2F3

ERBB4

FGFRIOP

FLJ10916

FLJI2650

GAMT

GFRAI

IGFBP4

JMJD2B

KIA1467

MAPT

MBTP_SI

MELK

METRN

PDGFRA

RAMPI

RRM2

SCUBE2
THRAP2

ZNF552

Figure: Pooling the data, Neighborhood Selection
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Figure: Pooling the data, SIMoNE with clustering
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Outline

Canonical framework: sparse GGM

Accounting for some biological features
Accounting for latent organisation of the network
Accouting for sample heterogeneity
Accouting for multiscale data with multiattribute models

Network inference for enhancing other methods
Differential analysis
Multivariate regression
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Handling scarcity and heterogeneity of data

Merge several experimental conditions

condition 1 condition 2 condition 3

Multiple inference of GGM

arg max
Θ(c),c=1...,C

C∑
c=1

`(Θ(c); S(c))− λ pen`1(Θ(c)).

21



Handling scarcity and heterogeneity of data

Inferring each graph independently does not help

condition 1 condition 2 condition 3

(X
(1)
1 , . . . ,X

(1)
n1 ) (X

(2)
1 , . . . ,X

(2)
n2 ) (X

(3)
1 , . . . ,X

(3)
n3 )

inference inference inference
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C∑
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`(Θ(c); S(c))− λ pen`1(Θ(c)).
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Handling scarcity and heterogeneity of data

By pooling all the available data (like we just have with Hess’ data set)

condition 1 condition 2 condition 3

(X1, . . . ,Xn ), n = n1 + n2 + n3.

inference

Multiple inference of GGM

arg max
Θ(c),c=1...,C

C∑
c=1

`(Θ(c); S(c))− λ pen`1(Θ(c)).
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Handling scarcity and heterogeneity of data

By breaking the separability
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A multitask approach
Chiquet, Grandvalet, Ambroise, Statistics and Computing 2010/11

Break the separability

Joint the optimization problem by either modifying

arg max
Θ(c),c=1...,C

C∑
c=1

˜̀(Θ(c); S̃(c))− λ pen`1(Θ(c)).

1. the fitting term

2. the regularization term
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Break the separability

Joint the optimization problem by either modifying

arg max
Θ(c),c=1...,C

C∑
c=1

˜̀(Θ(c); S̃(c))− λ pen`1(Θ(c)).

1. the fitting term

2. the regularization term

Intertwined-Lasso

I S = 1
n

∑T
t=1 ntS

(t) is the “pooled-tasks” covariance matrix.

I S̃(t) = αS(t) + (1− α)S is a mixture between specific and pooled
covariance matrices.
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A multitask approach
Chiquet, Grandvalet, Ambroise, Statistics and Computing 2010/11

Break the separability

Joint the optimization problem by either modifying

arg max
Θ(c),c=1...,C

C∑
c=1

˜̀(Θ(c); S̃(c))− λ pen`1(Θ(c)).

1. the fitting term

2. the regularization term

Sparsity with grouping effect

I Group-Lasso (Yuan and Lin 2006, Grandvalet and Canu, 1998),

I Cooperative-Lasso (Chiquet et al, AoAS, 2012),
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Grouping effects induced

Potential groups Group(s) induced by edges (1, 2)
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Revisiting the Hess et al. data set

AMFR

BBS4

BECNI

BTG3

CA12

CTNND2

E2F3

ERBB4

FGFRIOP

FLJ10916

FLJI2650

GAMT

GFRAI

IGFBP4

JMJD2B

KIA1467

MAPT

MBTPSI

MELK

METRN

PDGFRA

RAMPI

RRM2

SCUBE2

THRAP2

ZNF552

Figure: Cooperative-Lasso applied on the two sets of patients (PCR/noPCR).
Bold edges are different in the finally selection graph.
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Application: ER status in Breast cancer

Dataset: 466 patients with breast cancer

provided by Guedj et al.,
A refined molecular taxonomy of breast cancer, Oncogene, 2011.

Objective: identify changes in regulatory mechanisms

I ER+/ER−: breast cancer growth stimulated by estrogen hormones,

I ER+ tackled with anti-hormonal therapies,

I ER− found clinically more aggressive.

Jeanmougin, Charbonnier, Guedj and Chiquet, Network inference in breast cancer with
Gaussian graphical models and extensions.

Probabilistic graphical models for genetics, Oxford University Press, 2014.
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Application: ER status in Breast cancer
Network inference with cooperative-Lasso on 200 candidate genes (partial view)

Figure: The dashed black edges are inferred only under the ER- condition and the solid
black edges are only predicted under the ER+ condition. Gray are common to both
conditions
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Application: ER status in Breast cancer
Network inference with the cooperative-Lasso fits known anti-apoptotic mechanisms

ERBB4 

ERBB3 

IGF1R  EGFR 

ESR1 

BCL2 

Apoptosis 

Extracellular space 

Plasma membrane 

Cytoplasm 

Nucleus 

Growth Hormone IGF‐1 

ac?va?on 

repression 

Kinase 

Ligand‐dependent nuclear receptor 

Transmembrane receptor 

Other 

MAPT 

B binding 

CDK6 

B

ER+ specific regula?on 

ER‐ specific regula?on 

Figure: Most edges are supported by the literature (except two)
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Outline

Canonical framework: sparse GGM

Accounting for some biological features
Accounting for latent organisation of the network
Accouting for sample heterogeneity
Accouting for multiscale data with multiattribute models

Network inference for enhancing other methods
Differential analysis
Multivariate regression
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Why Multi-attribute Networks?
Joint work with E. Kolaczyk (Boston) and C. Ambroise (Évry)

DNA RNA Proteins

TF

Enz.

genes
transcription translation

replication

may bind

regulates

regulates

Data integration

I Omic technologies can profile cells at different levels: DNA, RNA,
protein, chromosomal, and functional.

I multiple molecular profiles combined on the same set of biological
samples can be synergistic.
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Multiattribute GGM

Consider e.g. some p genes of interest and the K = 2 omic experiments

1. Xi1 is the expression profile of gene i (transcriptomic data),

2. Xi2 is the corresponding protein concentration (proteomic data).

Define a block-wise precision matrix

I X = (X1, . . . ,Xp)T ∼ N (0,Σ) in RpK ,

I Xi = (Xi1, . . . ,XiK )ᵀ ∈ RK .

Θ = Σ−1 =

Θ11 Θ1p

. . .

Θp1 Θpp

 , Θij ∈MK ,K , ∀(i , j ) ∈ P2.

Graphical Interpretation

Define G = (P, E) as the multivariate analogue of the conditional graph:

(i , j ) ∈ E ⇔ Θij 6= 0KK .
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Multivariate Neighborhood selection

The penalized multivariate regression approach

For each node /gene, recover its neighborhood by solving

arg min
Bi∈M(p−1)K ,K

1

2N

∥∥Xi −X\iBi

∥∥2

F
+ λΩ(Bi),

Choice of Penalty

Group-based penalty to activate the set of attributes simultaneously on a
given link:

Ω(Bi) =
∑
j∈P\i

‖Bij ‖ , Bij ∈MKK

I ‖M ‖ = ‖M ‖F =
(∑

i ,j M
2
ij

)1/2
, the Frobenius norm,

I ‖M ‖ = ‖M ‖∞ = maxi ,j |Mij |, the sup norm (shared magnitude),

I ‖M ‖ = ‖M ‖? =
∑

eig(M ), the nuclear norm (rank penalty).
31



Illustration on the NCI-60 data set
Molecular profile data on a panel of 60 diverse human cancer cell lines

1. Protein: reverse-phase lysate arrays (RPLA) for 92 antibodies;
2. Gene : Human Genome U95 affymetrix (∼ 9,000 genes).

 consensus set with 91 protein and corresponding gene profiles.

0.0

0.1

0.2

0.3

0 100 200 300 400 500
edges

ja
cc

ar
d

couple

gene / (gene+protein)

gene / protein

protein / (gene+protein)

Jaccard’s similarity index

J (A,B) =
|A ∩ B |
|A ∪ B |

 multiattribute network shares
a high Jaccard index with both
uni attribute networks.
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Context: multitask framework (Trung Ha’s thesis)

condition 1 condition 2 condition 3

(X
(1)
1 , . . . ,X

(1)
n1 ) (X

(2)
1 , . . . ,X

(2)
n2 ) (X

(3)
1 , . . . ,X

(3)
n3 )

inference inference inferenceinference inference inference

Genes expressions might be shifted by 2 nonindependent phenomenons:

1. Its average expression level of genes.

2. Its relations with others genes.

35



Model setup for differential analysis

Idea

Share information for the multiple learning task corresponding to both

1. interactions (networks/precision matrix) and,

2. average expression levels (means).

to perform differential analysis.

Hypothesis testing for differential analysis

Assume X k = (X k
1 , . . .X

k
p ) ∼ N

(
µk ,Σ = Θ−1

)
. For each gene j , we

test  H0 : µkj = µkj , ∀(k , k ′)

H1 : ∃(k , k ′) : µkj 6= µk
′

j

,

where the genes are related by Σ.
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Coupling the two problems

GGM: linear regression point of view

Expression of gene j in task k for the ith replicate is linearly explained by
the other genes

X k
ij = µkj +

∑
j ′ 6=j

βjj ′(X
k
j ′ − µkj ′) + εkj , εj ∼ N (0, 1/Θjj ).

where βjj ′ = −Θjj ′/Θj ′j ′ explains the relation between genes j and j ′.

Strategy: fused the vector of means corrected by the covariance

minimize
µk ,Θk

K∑
k=1

RSS(µk ,Θ) + λ1‖Θ)‖1 + λ2

∑
k<k ′

ωkk ′

∥∥∥µk − µk ′
∥∥∥

1

where

I the red penalty regularizes the network component

I the blue penalty favors fusion of means across tasks.
37



Coupling the two problems

GGM: linear regression point of view

Expression of gene j in task k for the ith replicate is linearly explained by
the other genes

X k
ij = µkj +

∑
j ′ 6=j

βjj ′(X
k
j ′ − µkj ′) + εkj , εj ∼ N (0, 1/Θjj ).

where βjj ′ = −Θjj ′/Θj ′j ′ explains the relation between genes j and j ′.

Strategy: fused the vector of means corrected by the covariance

minimize
µk ,Θk

K∑
k=1

RSS(µk ,Θ) + λ1‖Θ)‖1 + λ2

∑
k<k ′

ωkk ′

∥∥∥µk − µk ′
∥∥∥

1

where

I the red penalty regularizes the network component

I the blue penalty favors fusion of means across tasks.
37



Outline

Canonical framework: sparse GGM

Accounting for some biological features
Accounting for latent organisation of the network
Accouting for sample heterogeneity
Accouting for multiscale data with multiattribute models

Network inference for enhancing other methods
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Multivariate regression
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Example: regulatory motif in P. falciparum (malaria)

Clustering of gene expression Correlation pattern between 4-size
(row: genes; columns: conditions) counts in gene promotor regions

Goal

Task: selecting regulatory motifs
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Inference in multivariate linear regression

Consider n samples and let for individual i

I yi be the q-dimensional vector of responses,

I xi be the p-dimensional vector of predictors,

I B be the p × q matrix of regression coefficients

I εi be a noise term with a q-dimensional covariance matrix Σ.

yi = BTxi + εi , εi ∼ N (0,Σ), ∀i = 1, . . . ,n,

Matrix notation

Let Y(n × q) and X(n × p) be the data matrices, then

Y = XB + ε, vec(ε) ∼ N (0, In ⊗Σ).

remark

If X is a design matrix, this is called the “General Linear Model” (GLM),
but Mathematics are the same.

40



Regularized MLR

Double penalization

Consider regularizing both B and the inverse covariance Σ−1

(B̂, Σ̂) = arg max
B,Σ

{
log `(Y,X; Σ,B) + λpen`1(B) + λ2pen(Σ−1)

}
 Σ−1 can be seen as a network between responses

Goal: enhancing the selection of relevant variables in B

I by carrying the general trend carried by Σ

I exact recovery of edges in Σ̂
−1

is no more needed

Applications

I with T. Mary-Huard, S. Robin, Multi-trait genomic selection

I with M. Brégère (MSc.), M. Perrot (PhD) C. Lévy-Leduc, omics.
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Example: multiple assays in transcriptomics
Stress condition in Plasmodium

load("plasmodium_expression.Rdata")

image(Matrix(cor(Y)), xlab="", ylab="", sub="")
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Estimating the covariance between the assays

library(huge)

huge.out <- huge(as.matrix(Y), method="glasso", cov.output=TRUE, verbose=FALSE)

out <- huge.select(huge.out, verbose=FALSE)
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Sparse inverse covariance allows compressing information

cat(sum(abs(out$opt.icov) != 0)/2, "param. among", p*2/2, "potential param.")

## 380 param. among 46 potential param.
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Conclusion

Sparse Gaussian Graphical Model

Well established framework with a vast, growing literature

1. Nice modeling tool (conditional dependencies),

2. Good theoretical framework (which I have not much talked about),

3. Powerful algorithms
I that scale the dimension (large p large n)
I that allow resampling/parallelization (for robustness)

 Great tool for covariance estimation/selection in a reasonably high
dimensional settings.

Still. . .

I an interaction is not even well defined

I  carefull with interpretation of the networks

I metagenomics data do have some specificities

I  adaptation needed
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Thanks

To my coauthors and to you for your patience and for listening. . .
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