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Motivations : Bladder cancer, a critical disease

One of the most widespread cancers in North America and Europe
New cases Number of deaths

(US, 2015)
76,960 16,390

Four times more common in men than in women

Major risks include smoking and age

Objectives (LIONS project)
Create mechanistic models of cancers to

Understand how gene expression is influenced by genomic events,

Identify deregulated transcription factors and their targets.

Gene expression clustering is commonly used to identify subtypes of cancer. Specific
studies of these subtypes are done to :

gain new insights into the molecular heterogeneity of tumors,

improve the management of cancer patients.



Model : Networks for representing gene regulations

We used data from the Carte d’Identité des Tumeurs
French program :

- 182 patients : 3 healthy + 179 cancerous,

- 1,704 TFs + 16,967 targets = 18,671 genes.
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Methods : Overview
1 Inferring the Gene Regulatory Network of reference
2 Computing a deregulation score for target genes
3 Finding the TFs that best explain the deregulated target genes

Expression data

G1

TF1

TF4

TF2 TF3

G2

TF4

TF3

TF5

G3 G4

Deregulation

Computing a deregulation score
EM-strategy

Inferring the GRN of reference

LICORN model



Methods : Overview
1 Inferring the Gene Regulatory Network of reference
2 Computing a deregulation score for target genes
3 Finding the TFs that best explain the deregulated target genes

Expression data

G1

TF1

TF4

TF2 TF3

G2

TF4

TF3

TF5

G3 G4

Deregulation

Computing a deregulation score
EM-strategy



Methods : Overview
1 Inferring the Gene Regulatory Network of reference
2 Computing a deregulation score for target genes
3 Finding the TFs that best explain the deregulated target genes

Expression data

G1

TF1

TF4

TF2 TF3

G2

TF4

TF3

TF5

G3 G4

Deregulation

Computing a deregulation score
EM-strategy

Identifying the deregulated TFs

Linear model



Method I : Inferring a Gene Regulatory Network
Main goal
Given a set of target genes G, a set of TFs, their expression matrices MG
and MTF, we aim at finding for each target gene the set of regulators that
best explains the level of expression.

Classical methods of inference include :
linear independent regressions,
Bayesian networks modelling...

−→ LICORN (LearnIng Cooperative Regulation Networks from
gene expression data), which aims at finding cooperative regulations
between co-regulated TFs and target genes.

eouh Elati et al (Bioinformatics, 2007)
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Method I : Inferring a GRN using LICORN

Step 1 : Mining global candidate of co-regulator sets

Computing frequent itemsets from discrete data : adaptation of the
Apriori algorithm (Agrawal, 1993) to the ternary case,

Creating the candidate co-regulator sets.
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Method I : Inferring a GRN using Licorn
Step 2 : Searching for candidate GRNs

Co-regulator status : SX =

{
−1 if ∀x ∈ X, x = −1
1 if ∀x ∈ X, x = 1
0 otherwise

Co-regulator constraint : X is a co-regulator set for g if

∃x, y ∈ {−1, 1}, CoregX(x, y) = |Sx
X ∩ Sy

g|/|Sy
g| ≥ 60%.
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Method I : Inferring a GRN using Licorn
Step 3 : Scoring GRNs

Define a regulatory program
Co-activator setA Co-inhibitor set I

SA SI
SI 0

1

−1

SA
0 1−1

0

−1

−1

1

0

−1

1

1

−1

S∗g

Rank candidate networks ((A, I) pairs) for the regulation of gene g
in terms of Mean Absolute Error (MAE) :

MAEg(A, I) =
n∑

s=1

|S∗g (s)− Sg(s)|.

Select the best networks :

GRN∗(g) = argmin(A,I) MAEg(A, I).



Method II : Computing a deregulation score

Model : Co-activator setA Co-inhibitor set I

SA SICollective status

S∗gExpected status

SgTrue status

Xg expression of gene g
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Method II : Computing a deregulation score

Model :

Co-activator setA Co-inhibitor set I

SA SI

S∗g

Sg

Xg expression of gene g

Dg

Deregulation variable

•
{
Sg = S∗g if Dg = 0
∀x 6= S∗g , P(Sg = x) = 1/2 if Dg = 1

• Dg = 1 with probability E

• Xg|Sg = x ∼ N (µx, σx)

• Sg multinomial distribution with parameters

α = (α−, α0, α+)

Parameters : θ = (µx, σx, α,E)
Likelihood : p(X,Z|θ) = ..............︸ ︷︷ ︸

intractable



Method II : Computing a deregulation score

EM-strategy :

initial guess θ0 of the model parameters,

E-step : fix θ and compute the conditional probability distribution of
the hidden variables given the observed expression values :

q(Z) = P(Z|X, .),

M-step : fix q and find θ that maximizes∑
q(Z) logP(X,Z|.).

Picchetti et al., BMC Systems Biology (2015)



Method III : Identifying deregulated TFs

Observations :

G ∈M(p−q)×q(R) the adjacency matrix associated to the GRN of
reference (q TFs and p− q target genes)

Y ∈M(p−q)×n(R) the matrix of deregulation score

Linear model :
Y = Gβ + ε,

where β of size q× n measures the effect of TF deregulation across all
patients.

Least-squares estimation of β

Linear Discriminant Analysis (LDA) to make β̂ sparse

Dimensionality reduction technique for classification that projects a dataset onto a lower

dimensional space with the aim of maximizing the separation between multiple classes.



Method III : Identifying deregulated TFs

4 subtypes : luminal 1 luminal 2 basal tcga 4

FIGURE – LDA visualization obtained on the bladder cancer data set.



Biological results

Subtypes Deregulated TFs
Luminal 1 SPOCD1 (33%), ASXL1 (28%), ZNF295 (28%),

FOXM1 (22%), HOXB3 (22%)
Luminal 2 PRDM12 (20%), ASXL1 (20%)
Basal ZSCAN16 (50%), TBX2 (36%), CEBPB (32%),

MNDA (27%), TOP2B (23%), ZNF540 (23%),
MYCL1 (23%), ANKRA2 (23%), HOXB3 (23%),
PRRX1 (23%)

Tcga 4 MNDA (59%), NFYA (53%), TNFAIP3 (35%),
NR3C1 (35%), ZNF440 (29%), TRIM25 (29%),
PRRX1 (29%), TRIM32 (24%), NFIA (24%),
RUNX3 (24%), HOXD1 (24%), ZNF469 (24%)

TABLE – Top deregulated TFs (number of patients for which the TFs are
involved in the deregulation of target genes between brackets)



Conclusion

Development of a 3-steps strategy for the identification of
deregulated genes in sick patients

Identification of deregulated TFs involved in specific subtypes of
bladder cancer

To be done...

discuss with biologists to validate these results and check for
discoveries ?

find gene sets that characterize specific subtypes of cancer

integrate multi-omics data (copy number of variations, methylation,
mutation,...)

Thank you for your attention !


