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Bayesian Network

Joint probability distribution over random variables
Finite set V of p variables
Finite domains for each discrete variable

e.g., p = 3 genes V = {A,B,C} with domains {false, true},
construct a Bayesian network that represents P(A,B,C)

Defines a set of conditional (in)dependencies
e.g., A ⊥⊥ B, A 6⊥⊥ B|C, . . .
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Bayesian Network

Equivalent to a product of conditional probabilities
e.g., P(A,B,C) = P(A)P(B)P(C|A,B)

One term per variable
Must sum to one:

∑
A
∑

B
∑

C P(A,B,C) = 1

Compact formulation
Only some (in)dependencies can be expressed
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Bayesian Network

Equivalent to a compact representation by a
Directed acyclic graph (DAG)
Conditional probability tables (CPT)

A B

C

A = true 0.2
A = false 0.8

A = true A = false
B = true B = false B = true B = false

C = true 1 0.5 0.5 0
C = false 0 0.5 0.5 1

B = true 0.1
B = false 0.9

P(A) P(C|A,B) P(B)
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Learning Bayesian Network

Expert knowledge
Learning BN structure from data

We will assume complete data (no missing values)
Independent and identically distributed sample data
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BN structure learning

Different approaches
Statistical independence tests
PC [Spirtes, Glymour and Scheines, 1993],...
Search and score
Hill-Climbing [Chickering et al, 1995], GES, LAGD,
Stochastic Greedy Search (SGS3) [Vandel et al., 2012a],...
Hybrid approaches
Max-Min Hill-Climbing (MMHC) [Tsamardinos et al, 2006],...
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Bayesian network Alarm (p = 37, 46 arcs)

(INRA-MIAT) Exact BN Learning October 13, 2016 8 / 37



Stochastic Greedy Search [Vandel et al., 2012a]
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Genetical genomics

Gene-expressions vary due
to polymorphisms
(stationary phenomenon in
controlled environment)

Data
gene-expression levels
marker genotypes
marker/gene
localisations on the
genome

[Jansen and Nap, Trends in Gen., 2001]
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Genetical genomics

Gene-expressions vary due
to polymorphisms
(stationary phenomenon in
controlled environment)

Data Arabidopsis thaliana
34,660 CATMA
microarray probes
89 SNP marker
genotypes
marker/gene
localisations on the
genome

Sample size : N = 158 RIL
[Loudet et al , Gen. 2008]

[Jansen and Nap, Trends in Gen., 2001]
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Genetical genomics on Arabidopsis thaliana

Consensus BN 2,775 transcripts with high eQTL (LOD≥ 3, bootstrap≥ 0.3) [Vandel et al., 2012b]
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Wrong arc orientation issue

(INRA-MIAT) Exact BN Learning October 13, 2016 12 / 37



Stochastic Greedy Search with
post-processing [Vandel et al., 2012a]
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Search and score

Superexponential number of DAGs (e.g., > 109 for p = 7)
NP-hard problem with two parents or more [Chickering, 1996]
Various scoring functions (BIC/MDL, BDeu,...)
Greedy search, tabu search, genetic algorithms,...
Exact methods

integer linear programming [Bartlett and Cussens, 2015]
dynamic programming [Yuan and Malone, 2013]
constraint programming [van Beek and Hoffmann, 2015]
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Integer linear programming

Definition of a 0/1 Linear Program (01LP)

min
x1,x2,...,xn

∑n
i=1 cixi

such that
∑n

i=1 ai,1xi ≤ b1∑n
i=1 ai,2xi ≤ b2

· · ·∑n
i=1 ai,mxi ≤ bm

xi ∈ {0,1} ∀i ∈ {1, . . . ,n}

State-of-the-art solvers : SCIP, CPLEX, Gurobi, Xpress-MP,...
Linear relaxation x∗ using continuous domains
Cutting planes (linear inequalities implied by the problem)
Branching
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01LP formulation

Family 0/1 variables
Create xv←W for each node v ∈ V and candidate parent set W ⊆ V.
xv←W = 1 iff W is the parent set for v .

e.g. xA←∅ = 1, xB←∅ = 1, xC←{A,B} = 1

At most p2p−1 candidate parent sets.

In practice, we limit the number of parents per node (typically to 3 or 4).

BIC score allows at most l = log( 2N
log N ) parents for sample size N, ie.

l = 4 for N = 450.
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01LP formulation

BDeu score
We have P(Graph|Data) ∝ P(Graph)P(Data|Graph).
P(Data|Graph) is called marginal likelihood.

BDeu score maximizes P(Data|Graph) using Dirichlet priors on the
CPT parameters.

max log P(Data|Graph) =

max
∑
v∈V

∑
W⊆V

cv←Wxv←W

such that . . .

Pruning can be applied on the list of candidate parent
sets [de Campos and Ji, 2010] :

remove xv←W if ∃U ⊆ V, cv←U ≥ cv←W
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01LP formulation

01LP model

max
∑

v∈V
∑

W⊆V cv←Wxv←W

such that
∑

W⊆V xv←W = 1 ∀v ∈ V∑
v∈C

∑
W:W∩C=∅ xv←W ≥ 1 ∀C ⊆ V (1)

xv←W ∈ {0,1} ∀v ∈ V,W ⊆ V (2)

At most 2p−1 − 1 cluster constraints (1),
Add them on-the-fly (removing one cycle/two circuits at a time)

Solve using a branch-and-cut method.
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Branch-and-cut

Cluster constraints
Finding cluster C such that x∗ violates acyclicity the most by
solving a 01LP subproblem (still NP-hard [Cussens et al., 2016])

max
∑
v∈V

∑
W⊆V

x∗v←Wyv←W −
∑
v∈V

zv

s.t. yv←W =⇒ zv , yv←W =⇒
∨

w∈W

zw∑
v∈V

∑
W⊆V

x∗v←Wyv←W −
∑
v∈V

zv > −1

yv←W, zv ∈ {0,1}

with yv←W ∈ {0,1} for each variable x∗v←W > 0 and zv = 1 iff v
belongs to cluster C.

We want to add more cuts...
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Branch-and-cut

Cluster constraints
Finding clusters C corresponding to elementary circuits in a
consensus directed graph Gand = (V,E) such that

(u → v) ∈ E iff
∑

W⊆V:u∈W

x∗v←W = 1

e.g., x∗C←{A,B} = 1, x∗B←{A,C} = 1, x∗A←{B,C} = 1 :
6 circuits of size 2 (A → B → A, B → A → B, A → C → A, C → A → C, B → C → B, C → B → C)

2 circuits of size 3 (A → B → C → A and A → C → B → A)

=⇒ 4 cluster constraints :
C1 = {A,B} : xA←∅ + xA←{C} + xB←∅ + xB←{C} ≥ 1
. . .
C4 = {A,B,C} : xA←∅ + xB←∅ + xC←∅ ≥ 1

In practice, we limit the size of the circuits (up to 6).

(INRA-MIAT) Exact BN Learning October 13, 2016 20 / 37



Branch-and-cut

Extra features
Value Propagation : removes simple unfeasible assignments.
e.g., if xB←{A,...} = 1 and xC←{B,...} = 1 then xA←{C,...} = 0
Sink-finding Primal Heuristic (see later on dynamic programming)
Generic cutting planes (Gomory, Strong Chvátal-Gomory,
Zero-Half [Nemhauser and Wolsey, 1988])
Set Packing Constraint

∑
v∈C

∑
W:C\{v}⊆W xv←W ≤ 1 ∀C ⊆ V

e.g., xA←{B,C} + xB←{A,C} + xC←{A,B} ≤ 1

In practice, we limit to SPCs with |C| ≤ 4.
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BN datasets
characteristics [Bartlett and Cussens, 2015]

(INRA-MIAT) Exact BN Learning October 13, 2016 22 / 37



Practical impact of B&C
features [Bartlett and Cussens, 2015]
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Structure Learning with dynamic programming

Key Idea
Any Bayesian network has at least one sink node.
=⇒ choose its best parent set without introducing any directed cycle.

Recursive definition

log P(Data|Graph) ≡ L(V) = max
s∈V

(L(V \ {s}) + max
W⊆V\{s}

cs←W)

First, find optimal structures for single variables.
Then, build optimal subnetworks for increasing larger variable sets
until V.

Time and space complexity in O(2p) [Silander and Myllymäki, 2006].

In practice, memory limits p ≤ 30.
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A simple order graph on three variables

start ∅

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}goal

Each path from start to goal corresponds to a variable ordering
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A simple order graph on three variables

start ∅

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}goal

E.g., ∅ → {B} → {B,C} → {A,B,C} corresponds to order (B,C,A)
(INRA-MIAT) Exact BN Learning October 13, 2016 25 / 37



A simple order graph on three variables

start ∅

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}goal

cC←∅

max(cB←∅, cB←{C})

max(cA←∅, cA←{B}, cA←{C}, cA←{B,C})

Each arc S1 → S2 has a score maxW⊆S1\{s} cs←W with s = S1 ∩ S2
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A simple order graph on three variables

start ∅

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}goal

cC←∅

max(cB←∅, cB←{C})

max(cA←∅, cA←{B}, cA←{C}, cA←{B,C})

A∗ find an optimal path in the order graph [Yuan and Malone, 2013]
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A simple order graph on three variables

start ∅

{A} {B} {C} g({C}) = cC←∅

{A,B} {A,C} {B,C}

{A,B,C}goal

cC←∅

max(cB←∅, cB←{C})

max(cA←∅, cA←{B}, cA←{C}, cA←{B,C})

A∗ explores the nodes in the order graph using a best-first traversal
(INRA-MIAT) Exact BN Learning October 13, 2016 25 / 37



A simple order graph on three variables

start ∅

{A} {B} {C} g({C}) + h({B,C})

{A,B} {A,C} {B,C}

{A,B,C}goal

cC←∅

max(cB←∅, cB←{C})

max(cA←∅, cA←{B}, cA←{C}, cA←{B,C})

A∗ exploits an upper bound h on the remaining distance
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A simple order graph on three variables

start ∅

{A} {B} {C} g({C}) + h({B,C})

{A,B} {A,C} {B,C}

{A,B,C}goal

cC←∅

max(cB←∅, cB←{C})

max(cA←∅, cA←{B}, cA←{C}, cA←{B,C})

h1(U) =
∑

v∈V\U maxW⊆V\{v} cv←W
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Experiments with A∗ [Yuan and Malone, 2013]

Parkinson (p = 23,N = 195), A∗ using h1 takes ≈ 100 seconds to
solve.

(INRA-MIAT) Exact BN Learning October 13, 2016 26 / 37



A stronger heuristic hk for A∗

start ∅

k = 2 {A} {B} {C}

k = 1

g(C) + h({A,B})

{A,B} {A,C} {B,C}

{A,B,C}goal

Explore from the goal up to k layers, complexity in O( n!
(n−k)!)
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A stronger heuristic hk for A∗

start ∅

k = 2 {A} {B} {C}

k = 1

g(C) + h({A,B})

{A,B} {A,C} {B,C}

{A,B,C}goal

Given a partition {S1, . . . ,Sp} of V \ U with |Si| ≤ k , hk (U) =
∑

Si
h(Si)
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Experiments with A∗ [Yuan and Malone, 2013]

Parkinson (p = 23,N = 195), A∗ using static hk=12 takes ≈ 10 seconds
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How to partition V in quasi-independent subproblems?

List of non-dominated candidate parent sets [Fan and Yuan, 2015]
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How to partition V in quasi-independent subproblems?

All / Top-1 / Top-2
parent relation graphs divided into SCCs [Fan and Yuan, 2015]
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Examples of parent relation graphs (BIC score)

Flag (p = 29,N = 194) Barley (p = 48,N = 1000)
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Comparative Results [Yuan and Malone, 2013]

using Minimum Description Length (≈BIC) score instead of BDeu
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Constraint
programming [van Beek and Hoffmann, 2015]

dual model for acyclicity : DAG encoding and topological order
symmetry breaking constraints
same lower bound as dynamic programming A∗k
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Comparative Results [van Beek and Hoffmann, 2015]
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Softwares

GOBNILP www.cs.york.ac.uk/aig/sw/gobnilp

A∗ www.urlearning.org
CPBayes cs.uwaterloo.ca/˜vanbeek
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Conclusions and Perspectives

A∗ is limited by the number of variables (≈ 60)
GOBNILP by the number of candidate parent sets (≈ 20,000)

Hybrid approaches combining approximate & exact methods
Add prior knowledge (P(Graph|Data) ∝ P(Graph)P(Data|Graph))
Easy to add user constraints in generic 01LP or CP frameworks
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